Applied Microbiology and Biotechnology

, Volume 97, Issue 13, pp 5979–5991 | Cite as

Core flooding tests to investigate the effects of IFT reduction and wettability alteration on oil recovery during MEOR process in an Iranian oil reservoir

  • Arash Rabiei
  • Milad Sharifinik
  • Ali Niazi
  • Abdolnabi Hashemi
  • Shahab Ayatollahi
Applied microbial and cell physiology


Microbial enhanced oil recovery (MEOR) refers to the process of using bacterial activities for more oil recovery from oil reservoirs mainly by interfacial tension reduction and wettability alteration mechanisms. Investigating the impact of these two mechanisms on enhanced oil recovery during MEOR process is the main objective of this work. Different analytical methods such as oil spreading and surface activity measurements were utilized to screen the biosurfactant-producing bacteria isolated from the brine of a specific oil reservoir located in the southwest of Iran. The isolates identified by 16S rDNA and biochemical analysis as Enterobacter cloacae (Persian Type Culture Collection (PTCC) 1798) and Enterobacter hormaechei (PTCC 1799) produce 1.53 g/l of biosurfactant. The produced biosurfactant caused substantial surface tension reduction of the growth medium and interfacial tension reduction between oil and brine to 31 and 3.2 mN/m from the original value of 72 and 29 mN/m, respectively. A novel set of core flooding tests, including in situ and ex situ scenarios, was designed to explore the potential of the isolated consortium as an agent for MEOR process. Besides, the individual effects of wettability alteration and IFT reduction on oil recovery efficiency by this process were investigated. The results show that the wettability alteration of the reservoir rock toward neutrally wet condition in the course of the adsorption of bacteria cells and biofilm formation are the dominant mechanisms on the improvement of oil recovery efficiency.


Microbial enhanced oil recovery (MEOR) Wettability alteration Amott test Core flooding tests Biosurfactant Interfacial tension 



The authors would like to thank the EOR Research Center and Biotechnology Institute of Shiraz University for providing the technical and financial support. Also, special thanks are due to Amin Ramezani and Farzaneh Aram for their technical help in this study.


  1. Abbasi H, Hamedi MM, Lotfabad TB, Zahiri HS, Sharafi H, Masoomi F, Moosavi-Movahedi AA, Ortiz A, Amanlou M, Noghabi KA (2012) Biosurfactant-producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: physicochemical and structural characteristics of isolated biosurfactant. J Biosci Bioeng 113:211–219. doi: 10.1016/j.jbiosc.2011.10.002 CrossRefGoogle Scholar
  2. Abouseoud M, Maachi R, Amrane A, Boudergua S, Nabi A (2008) Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens. Desalination 223:143–151. doi: 10.1016/j.desal.2007.01.198 CrossRefGoogle Scholar
  3. Afrapoli MS, Crescente C, Alipour S, Torsaeter O (2009) The effect of bacterial solution on the wettability index and residual oil saturation in sandstone. J Pet Sci Eng 69:255–260. doi: 10.1016/j.petrol.2009.09.002 CrossRefGoogle Scholar
  4. Afrapoli MS, Alipour S, Torsaeter O (2010) Effect of wettability and interfacial tension on microbial improved oil recovery with Rhodococcus sp 094. Paper presented at the SPE Improved Oil Recovery Symposium, Tulsa, Oklahoma, USA, 24–28 April 2010. doi:  10.2118/129707-ms
  5. Afshar S, Lotfabad TB, Roostaazad R, Najafabadi AR, Noghabi KA (2008) Comparative approach for detection of biosurfactant-producing bacteria isolated from Ahvaz petroleum excavation areas in south of Iran. Ann Microbiol 58:555–559. doi: 10.1007/bf03175557 CrossRefGoogle Scholar
  6. Almehaideb R, Zekri AY (2002) Laboratory investigation of parameters affecting optimization of microbial flooding in carbonate reservoirs. Pet Sci Technol 20:377–392. doi: 10.1081/lft-120002107 CrossRefGoogle Scholar
  7. Al-Sulaimani H, Al-Wahaibi Y, Al-Bahry S, Elshafie A, Al-Bemani A, Joshi S, Ayatollahi S (2012) Residual-oil recovery through injection of biosurfactant, chemical surfactant, and mixtures of both under reservoir temperatures: induced-wettability and interfacial-tension effects. SPE Reserv Eval Eng 15:210–217. doi: 10.2118/158022-pa Google Scholar
  8. Amani H, Sarrafzadeh MH, Haghighi M, Mehrnia MR (2010) Comparative study of biosurfactant producing bacteria in MEOR applications. J Pet Sci Eng 75:209–214. doi: 10.1016/j.petrol.2010.11.008 CrossRefGoogle Scholar
  9. Amézcua-Vega C, Poggi-Varaldo HM, Esparza-García F, Ríos-Leal E, Rodríguez-Vázquez R (2007) Effect of culture conditions on fatty acids composition of a biosurfactant produced by Candida ingens and changes of surface tension of culture media. Bioresour Technol 98:237–240. doi: 10.1016/j.biortech.2005.11.025 CrossRefGoogle Scholar
  10. Anderson W (1986) Wettability literature survey—part 2: wettability measurement. J Pet Tech 38:1246–1262. doi: 10.2118/13933-PA Google Scholar
  11. Armstrong RT, Wildenschild D (2012) Investigating the pore-scale mechanisms of microbial enhanced oil recovery. J Pet Sci Eng 94–95:155–164. doi: 10.1016/j.petrol.2012.06.031 CrossRefGoogle Scholar
  12. Ayirala SC, Rao DN (2004) Multiphase flow and wettability effects of surfactants in porous media. Colloids Surf A 241:313–322. doi: 10.1016/j.colsurfa.2004.04.047 CrossRefGoogle Scholar
  13. Banat IM, Makkar RS, Cameotra S (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508. doi: 10.1007/s002530051648 CrossRefGoogle Scholar
  14. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444. doi: 10.1007/s00253-010-2589-0 CrossRefGoogle Scholar
  15. Bharali P, Das S, Konwar B, Thakur A (2011) Crude biosurfactant from thermophilic Alcaligenes faecalis: feasibility in petro-spill bioremediation. Int Biodeterior Biodegrad 65:682–690CrossRefGoogle Scholar
  16. Bordoloi N, Konwar B (2009) Bacterial biosurfactant in enhancing solubility and metabolism of petroleum hydrocarbons. J Hazard Mater 170:495–505. doi: 10.1016/j.jhazmat.2009.04.136 CrossRefGoogle Scholar
  17. Bryant RS, Burchfield TE (1989) Review of microbial technology for improving oil recovery. SPE Reservoir Eng 4:151–154. doi: 10.2118/16646-pa Google Scholar
  18. Burgos-Díaz C, Pons R, Espuny M, Aranda F, Teruel J, Manresa A, Ortiz A, Marqués A (2011) Isolation and partial characterization of a biosurfactant mixture produced by Sphingobacterium sp. isolated from soil. J Colloid Interface Sci. doi: 10.1016/j.jcis.2011.05.054 Google Scholar
  19. Chisholm JL, Kashikar SV, Knapp RM, Mclnerney MJ, Menzies DE, Silfanus NJ (1990) Microbial enhanced oil recovery: interfacial tension and gas-induced relative permeability effects, SPE-20481. Paper presented at the SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, 23–26 September 1990. doi:  10.2118/20481-ms
  20. Cooper DG, Goldenberg BG (1987) Surface-active agents from two Bacillus species. Appl Environ Microbiol 53:224–229Google Scholar
  21. Crescente CM, Torsaeter O, Hultmann L, Stroem A, Rasmussen K, Kowalewski E (2006) An experimental study of driving mechanisms in MIOR processes by using Rhodococcus sp. 094. Paper presented at the SPE/DOE Symposium on Improved Oil Recovery, Tulsa, Oklahoma, USA, 22–26 April. doi:  10.2118/100033-ms
  22. Cuiec L (1984) Rock/crude-oil interactions and wettability: an attempt to understand their interrelation. Paper presented at the SPE Annual Technical Conference and Exhibition, Houston, Texas, 16–19 September 1984. doi:  10.2118/13211-ms
  23. Darvishi P, Ayatollahi S, Mowla D, Niazi A (2011) Biosurfactant production under extreme environmental conditions by an efficient microbial consortium, ERCPPI-2. Colloids Surf B 84:293–300. doi: 10.1016/j.colsurfb.2011.01.011 CrossRefGoogle Scholar
  24. Das K, Mukherjee AK (2005) Characterization of biochemical properties and biological activities of biosurfactants produced by Pseudomonas aeruginosa mucoid and non-mucoid strains isolated from hydrocarbon-contaminated soil samples. Appl Microbiol Biotechnol 69:192–199. doi: 10.1007/s00253-005-1975-5 CrossRefGoogle Scholar
  25. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64Google Scholar
  26. DeSantis T, Dubosarskiy I, Murray S, Andersen G (2003) Comprehensive aligned sequence construction for automated design of effective probes (CASCADE-P) using 16S rDNA. Bioinformatics 19:1461–1468. doi: 10.1093/bioinformatics/btg200 CrossRefGoogle Scholar
  27. Donaldson EC, Chilingar GV, Yen TF (1989) Microbial enhanced oil recovery. Elsevier, AmsterdamGoogle Scholar
  28. Dyke M, Gulley S, Lee H, Trevors J (1993) Evaluation of microbial surfactants for recovery of hydrophobic pollutants from soil. J Ind Microbiol 11:163–170. doi: 10.1007/bf01583718 CrossRefGoogle Scholar
  29. Fiechter A (1992) Biosurfactants: moving towards industrial application. Trends Food Sci Technol 3:286–293. doi: 10.1016/s0924-2244(10)80013-5 CrossRefGoogle Scholar
  30. Gandler G, Gbosi A, Bryant SL, Britton LN (2006) Mechanistic understanding of microbial plugging for improved sweep efficiency. Paper presented at the SPE/DOE Symposium on Improved Oil Recovery, Tulsa, Oklahoma, USA, 22–26 April 2006. doi:  10.2118/100048-ms
  31. Ghojavand H, Vahabzadeh F, Mehranian M, Radmehr M, Shahraki KA, Zolfagharian F, Emadi M, Roayaei E (2008) Isolation of thermotolerant, halotolerant, facultative biosurfactant-producing bacteria. Appl Microbiol Biotechnol 80:1073–1085. doi: 10.1007/s00253-008-1570-7 CrossRefGoogle Scholar
  32. Gray M, Yeung A, Foght J, Yarranton HW (2008) Potential microbial enhanced oil recovery processes: a critical analysis. Paper presented at the SPE Annual Technical Conference and Exhibition, Denver, Colorado, USA, 21–24 September 2008. doi:  10.2118/114676-ms
  33. Hiorth A, Kaster K, Lohne A, Siqveland OK, Berland H, Giske NH, Stavland A (2007) Microbial enhanced oil recovery-mechanism. Paper presented at the International Symposium of the Society of Core Analysts, Calgary, Canada (10-13 September 2007)Google Scholar
  34. Huy NQ, Jin S, Amada K, Haruki M, Huu NB, Hang DT, Ha DTC, Imanaka T, Morikawa M, Kanaya S (1999) Characterization of petroleum-degrading bacteria from oil-contaminated sites in Vietnam. J Biosci Bioeng 88:100–102. doi: 10.1016/S1389-1723(99)80184-4 CrossRefGoogle Scholar
  35. Jarrahian K, Seiedi O, Sheykhan M, Sefti MV, Ayatollahi S (2012) Wettability alteration of carbonate rocks by surfactants: a mechanistic study. Colloids Surf A 410:1–10. doi: 10.1016/j.colsurfa.2012.06.007 CrossRefGoogle Scholar
  36. Jr Fulcher RA, Ertekin T, Stahl CD (1985) Effect of capillary number and its constituents on two-phase relative permeability curves. J Pet Technol 37:249–260. doi: 10.2118/12170-pa Google Scholar
  37. Karimi M, Mahmoodi M, Niazi A, Al-Wahaibi Y, Ayatollahi S (2012) Investigating wettability alteration during MEOR process, a micro/macro scale analysis. Colloids Surf B Biointerfaces 95:129–136CrossRefGoogle Scholar
  38. Kim SH, Lim EJ, Lee SO, Lee JD, Lee TH (2000) Purification and characterization of biosurfactants from Nocardia sp. L-417. Biotechnol Appl Biochem 31:249–253. doi: 10.1042/ba19990111 CrossRefGoogle Scholar
  39. Kowalewski E, Rueslåtten I, Steen K, Bødtker G, Torsæter O (2006) Microbial improved oil recovery—bacterial induced wettability and interfacial tension effects on oil production. J Pet Sci Eng 52:275–286. doi: 10.1016/j.petrol.2006.03.011 CrossRefGoogle Scholar
  40. Kryachko Y, Nathoo S, Lai P, Voordouw J, Prenner EJ, Voordouw G (2012) Prospects for using native and recombinant rhamnolipid producers for microbially enhanced oil recovery. Int Biodeterior Biodegrad. doi: 10.1016/j.ibiod.2012.09.012 Google Scholar
  41. Lazar I, Petrisor I, Yen T (2007) Microbial enhanced oil recovery (MEOR). Pet Sci Technol 25:1353–1366. doi: 10.1080/10916460701287714 CrossRefGoogle Scholar
  42. Lin SC (1999) Biosurfactants: recent advances. J Chem Technol Biotechnol 66:109–120. doi: 10.1002/(SICI)1097-4660(199606)66:2<109::AID-JCTB477>3.0.CO;2-2 CrossRefGoogle Scholar
  43. Lotfabad TB, Shourian M, Roostaazad R, Najafabadi AR, Adelzadeh MR, Noghabi KA (2009) An efficient biosurfactant-producing bacterium Pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran. Colloids Surf B 69:183–193. doi: 10.1016/j.colsurfb.2008.11.018 CrossRefGoogle Scholar
  44. Madigan MT, Martinko JM, Stahl DA, Clark DP (2010) Brock Biology of Microorganisms, 13th edn. Pearson Benjamin Cummings, San FranciscoGoogle Scholar
  45. Mäntynen V, Lindström K (1998) A rapid PCR-based DNA test for enterotoxic Bacillus cereus. Appl Environ Microbiol 64:1634–1639Google Scholar
  46. Maudgalya S, Knapp RM, McInerney M (2007) Microbially enhanced oil recovery technologies. A review of the past, present and future. Paper presented at the Production and Operations Symposium, Oklahoma City, Oklahoma, USA, 31 March-3 April 2007. doi:  10.2118/106978-ms
  47. McInerney M, Duncan K, Youssef N, Fincher T, Maudgalya S, Folmsbee M, Knapp R, Simpson RR, Ravi N, Nagle D (2003) Development of microorganisms with improved transport and biosurfactant activity for enhanced oil recovery. Annual Report for DOE DEFE-02NT15321. University of OklahomaGoogle Scholar
  48. Morrow NR (1990) Wettability and its effect on oil recovery. J Pet Tech 42:1476–1484. doi: 10.2118/21621-pa Google Scholar
  49. Nitschke M, Costa S (2007) Biosurfactants in food industry. Trends Food Sci Technol 18:252–259. doi: 10.1016/j.tifs.2007.01.002 CrossRefGoogle Scholar
  50. Persson A, Molin G (1987) Capacity for biosurfactant production of environmental Pseudomonas and Vibrionaceae growing on carbohydrates. Appl Microbiol Biotechnol 26:439–442. doi: 10.1007/bf00253528 CrossRefGoogle Scholar
  51. Płaza GA, Zjawiony I, Banat IM (2006) Use of different methods for detection of thermophilic biosurfactant-producing bacteria from hydrocarbon-contaminated and bioremediated soils. J Pet Sci Eng 50:71–77. doi: 10.1016/j.petrol.2005.10.005 CrossRefGoogle Scholar
  52. Polson EJ, Buckman JO, Bowen DG, Todd AC, Gow MM, Cuthbert SJ (2010) An environmental-scanning-electron-microscope investigation into the effect of biofilm on the wettability of quartz. SPE J 15:223–227. doi: 10.2118/114421-pa Google Scholar
  53. Pruthi V, Cameotra S (2003) Effect of nutrients on optimal production of biosurfactants by Pseudomonas putida—a Gujarat oil field isolate. J Surfactant Deterg 6:65–68. doi: 10.1007/s11743-003-0250-9 CrossRefGoogle Scholar
  54. Saharan B, Rahu R, Sharma D (2011) A review on biosurfactants: fermentation, current developments and perspectives. Genet Eng Biotechnol J GEBJ-29 OpenURLGoogle Scholar
  55. Sarafzadeh P, Hezave AZ, Ravanbakhsh M, Niazi A, Ayatollahi S (2013) Enterobacter cloacae as biosurfactant producing bacterium: differentiating its effects on interfacial tension and wettability alteration mechanisms for oil recovery during MEOR process. Colloids Surf B 105:223–229. doi: 10.1016/j.colsurfb.2012.12.042 CrossRefGoogle Scholar
  56. Sayyouh M, Al-Blehed M (1995) Effect of microorganisms on rock wettability. J Adhes Sci Technol 9:425–431. doi: 10.1163/156856195x00365 CrossRefGoogle Scholar
  57. Seethepalli A, Adibhatla B, Mohanty KK (2004) Wettability alteration during surfactant flooding of carbonate reservoirs. Paper presented at the SPE/DOE Symposium on Improved Oil Recovery, Tulsa, Oklahoma, 17–21 April 2004. doi:  10.2118/89423-ms
  58. Seghal Kiran G, Anto Thomas T, Selvin J, Sabarathnam B, Lipton A (2010) Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture. Bioresour Technol 101:2389–2396. doi: 10.1016/j.biortech.2009.11.023 CrossRefGoogle Scholar
  59. Sen R (2008) Biotechnology in petroleum recovery: the microbial EOR. Prog Energy Combust Sci 34:714–724. doi: 10.1016/j.pecs.2008.05.001 CrossRefGoogle Scholar
  60. Soudmand-asli A, Ayatollahi SS, Mohabatkar H, Zareie M, Shariatpanahi SF (2007) The in situ microbial enhanced oil recovery in fractured porous media. J Pet Sci Eng 58:161–172. doi: 10.1016/j.petrol.2006.12.004 CrossRefGoogle Scholar
  61. Vazquez-Duhalt R, Ramírez RQ (2004) Petroleum biotechnology: developments and perspectives, vol 151. Elsevier, AmsterdamGoogle Scholar
  62. Velraeds MMC, van der Mei HC, Reid G, Busscher HJ (1996) Physicochemical and biochemical characterization of biosurfactants released by Lactobacillus strains. Colloids Surf B 8:51–61. doi: 10.1016/S0927-7765(96)01297-0 CrossRefGoogle Scholar
  63. Vijapurapu CS, Rao DN (2003) Effect of brine dilution and surfactant concentration on spreading and wettability. Paper presented at the International Symposium on Oilfield Chemistry, Houston, Texas, 5–7 February 2003. doi:  10.2118/80273-ms
  64. Wang L, Tang Y, Wang S, Liu RL, Liu MZ, Zhang Y, Liang FL, Feng L (2006) Isolation and characterization of a novel thermophilic Bacillus strain degrading long-chain n-alkanes. Extremophiles 10:347–356. doi: 10.1007/s00792-006-0505-4 CrossRefGoogle Scholar
  65. Wang Q, Fang X, Bai B, Liang X, Shuler PJ, Goddard WA III, Tang Y (2007) Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery. Biotechnol Bioeng 98:842–853. doi: 10.1002/bit.21462 CrossRefGoogle Scholar
  66. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703Google Scholar
  67. Youssef NH, Duncan KE, Nagle DP, Savage KN, Knapp RM, McInerney MJ (2004) Comparison of methods to detect biosurfactant production by diverse microorganisms. J Microbiol Methods 56:339–347. doi: 10.1016/j.mimet.2003.11.001 CrossRefGoogle Scholar
  68. Zargari S, Ostvar S, Niazi A, Ayatollahi S (2010) Atomic force microscopy and wettability study of the alteration of mica and sandstone by a biosurfactant-producing bacterium Bacillus thermodenitrificans. J Adv Microsc Res 5:143–148. doi: 10.1166/jamr.2010.1036 CrossRefGoogle Scholar
  69. Zekri AY, Ghannam MT, Almehaideb RA (2003) Carbonate rocks wettability changes induced by microbial solution. Paper presented at the SPE Asia Pacific Oil and Gas Conference and Exhibition, Jakarta, Indonesia, 9–11 September 2003. doi:  10.2118/80527-ms

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Arash Rabiei
    • 1
  • Milad Sharifinik
    • 2
  • Ali Niazi
    • 3
  • Abdolnabi Hashemi
    • 1
  • Shahab Ayatollahi
    • 4
    • 5
    • 6
  1. 1.Department of Petroleum EngineeringPetroleum University of TechnologyAhwazIran
  2. 2.Department of Petroleum Engineering, Science and Research BranchIslamic Azad UniversityFarsIran
  3. 3.Institute of BiotechnologyShiraz UniversityShirazIran
  4. 4.Enhanced Oil Recovery Excellence Research CenterShiraz UniversityShirazIran
  5. 5.School of Chemical and Petroleum EngineeringShiraz UniversityShirazIran
  6. 6.Sharif University of TechnologyTehranIran

Personalised recommendations