Applied Microbiology and Biotechnology

, Volume 97, Issue 8, pp 3301–3307 | Cite as

Polyhydroxyalkanoic acids from structurally-unrelated carbon sources in Escherichia coli

  • Qian Wang
  • Qianqian Zhuang
  • Quanfeng Liang
  • Qingsheng Qi
Mini-Review

Abstract

Polyhydroxyalkanoates (PHAs) that contain varied monomers with different chain lengths/structures were normally synthesized when a structurally-related precursor was present. The biosynthesis of PHAs from unrelated carbon sources in microorganisms including Escherichia coli met many challenges in the past. Recently, with the development of metabolic engineering and synthetic biology, the production of PHAs from unrelated carbon sources obtained a breakthrough. Polyesters containing 2-hydroxypropionate, 3-hydroxypropionate, 4-hydroxybutyrate, 3-hydroxyvalarate, and medium-chain-length 3-hydroxyalkanoate monomers can all be synthesized in E. coli by integrating exogenous or endogenous pathways and/or genes. This review will summarize the progresses in this area. In addition, the strategies that lead to the production of PHAs with varied monomers and high polymer content in the cell are discussed.

Keywords

Polyhydroxyalkanoates Unrelated carbon source Escherichia coli PHA Metabolic engineering 

References

  1. Agnew DE, Stevermer AK, Youngquist JT, Pfleger BF (2012) Engineering Escherichia coli for production of C(12)-C(14) polyhydroxyalkanoate from glucose. Metab Eng 14:705–713. doi:10.1016/j.ymben.2012.08.003 CrossRefGoogle Scholar
  2. Aldor IS, Kim SW, Prather KL, Keasling JD (2002) Metabolic engineering of a novel propionate-independent pathway for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in recombinant Salmonella enterica serovar typhimurium. Appl Environ Microbiol 68:3848–3854CrossRefGoogle Scholar
  3. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472Google Scholar
  4. Andreeßen B, Lange AB, Robenek H, Steinbüchel A (2010) Conversion of glycerol to poly(3-hydroxypropionate) in recombinant Escherichia coli. Appl Environ Microbiol 76:622–626. doi:10.1128/AEM.02097-09 CrossRefGoogle Scholar
  5. Byrom D (1987) Polymer synthesis by microorganisms: technology and economics. Trends Biotechnol 5:246–250CrossRefGoogle Scholar
  6. Chen GQ (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38:2434–2446. doi:10.1039/b812677c CrossRefGoogle Scholar
  7. Chen Q, Wang Q, Wei G, Liang Q, Qi Q (2011) Production in Escherichia coli of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with differing monomer compositions from unrelated carbon sources. Appl Environ Microbiol 77:4886–4893. doi:10.1128/AEM.00091-11 CrossRefGoogle Scholar
  8. Cho A, Yun H, Park JH, Lee SY, Park S (2010) Prediction of novel synthetic pathways for the production of desired chemicals. BMC Syst Biol 4:35. doi:10.1186/1752-0509-4-35 CrossRefGoogle Scholar
  9. Choi MH, Yoon SC, Lenz RW (1999) Production of poly(3-hydroxybutyric acid-co-4-hydroxybutyric acid) and poly(4-hydroxybutyric acid) without subsequent degradation by Hydrogenophaga pseudoflava. Appl Environ Microbiol 65:1570–1577Google Scholar
  10. Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R (2011) Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature 476:355–359. doi:10.1038/nature10333 CrossRefGoogle Scholar
  11. Doi Y, Kunioka M, Nakamura Y, Soga K (1988) Nuclear magnetic resonance studies on unusual bacterial copolyesters of 3-hydroxybutyrate and 4-hydroxybutyrate. Macromolecules 21:2722–2727CrossRefGoogle Scholar
  12. Eschenlauer AC, Stoup SK, Srienc F, Somers DA (1996) Production of heteropolymeric polyhydroxyalkanoate in Escherichia coli from a single carbon source. Int J Biol Macromol 19:121–130CrossRefGoogle Scholar
  13. Felnagle EA, Chaubey A, Noey EL, Houk KN, Liao JC (2012) Engineering synthetic recursive pathways to generate non-natural small molecules. Nat Chem Biol 8:518–526. doi:10.1038/nchembio.959 CrossRefGoogle Scholar
  14. Fidler S, Dennis D (1992) Polyhydroxyalkanoate production in recombinant Escherichia coli. FEMS Microbiol Rev 9:231–235Google Scholar
  15. Fukui T, Abe H, Doi Y (2002) Engineering of Ralstonia eutropha for production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from fructose and solid-state properties of the copolymer. Biomacromolecules 3:618–624CrossRefGoogle Scholar
  16. Fukui T, Suzuki M, Tsuge T, Nakamura S (2009) Microbial synthesis of poly((R)-3-hydroxybutyrate-co-3-hydroxypropionate) from unrelated carbon sources by engineered Cupriavidus necator. Biomacromolecules 10:700–706. doi:10.1021/bm801391j CrossRefGoogle Scholar
  17. Green PR, Kemper J, Schechtman L, Guo L, Satkowski M, Fiedler S, Steinbuchel A, Rehm BH (2002) Formation of short-chain length/medium chain length polyhydroxyalkanoate copolymers by fatty acid beta-oxidation inhibited Ralstonia eutropha. Biomacromolecules 3:208–213CrossRefGoogle Scholar
  18. Hazer B, Steinbüchel A (2007) Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl Microbiol Biotechnol 74:1–12. doi:10.1007/s00253-006-0732-8 CrossRefGoogle Scholar
  19. Hein S, Söhling B, Gottschalk G, Steinbüchel A (1997) Biosynthesis of poly(4-hydroxybutyric acid) by recombinant strains of Escherichia coli. FEMS Microbiol Lett 153:411–418CrossRefGoogle Scholar
  20. Jiang X, Meng X, Xian M (2009) Biosynthetic pathways for 3-hydroxypropionic acid production. Appl Microbiol Biotechnol 82:995–1003. doi:10.1007/s00253-009-1898-7 CrossRefGoogle Scholar
  21. Jung YK, Kim TY, Park SJ, Lee SY (2010) Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol Bioeng 105:161–171. doi:10.1002/bit.22548 CrossRefGoogle Scholar
  22. Kang CK, Kusaka S, Doi Y (1995) Structure and properties of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) produced by Alcaligenes latus. Biotechnol Lett 17:583–588CrossRefGoogle Scholar
  23. Klinke S, Ren Q, Witholt B, Kessler B (1999) Production of medium-chain-length poly(3-hydroxyalkanoates) from gluconate by recombinant Escherichia coli. Appl Environ Microbiol 65:540–548Google Scholar
  24. Langenbach S, Rehm BH, Steinbüchel A (1997) Functional expression of the PHA synthase gene phaC1 from Pseudomonas aeruginosa in Escherichia coli results in poly(3-hydroxyalkanoate) synthesis. FEMS Microbiol Lett 150:303–309CrossRefGoogle Scholar
  25. Law KH, Chan PL, Lau WS, Cheng YC, Leung YC, Lo WH, Lawford H, Yu HF (2004) Construction of recombinant Escherichia coli strains for production of poly-(3-hydroxybutyrate-co-3-hydroxyvalerate). Appl Biochem Biotechnol 113–116:361–372CrossRefGoogle Scholar
  26. Lee JW, Na D, Park JM, Lee J, Choi S, Lee SY (2012) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chem Biol 8:536–546. doi:10.1038/nchembio.970 Google Scholar
  27. Li R, Chen Q, Wang PG, Qi Q (2007a) A novel-designed Escherichia coli for the production of various polyhydroxyalkanoates from inexpensive substrate mixture. Appl Microbiol Biotechnol 75:1103–1109CrossRefGoogle Scholar
  28. Li R, Zhang H, Qi Q (2007b) The production of polyhydroxyalkanoates in recombinant Escherichia coli. Bioresour Technol 98:2313–2320. doi:10.1016/j.biortech.2006.09.014 CrossRefGoogle Scholar
  29. Li ZJ, Shi ZY, Jian J, Guo YY, Wu Q, Chen GQ (2010) Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from unrelated carbon sources by metabolically engineered Escherichia coli. Metab Eng 12:352–359. doi:10.1016/j.ymben.2010.03.003 CrossRefGoogle Scholar
  30. Meng DC, Shi ZY, Wu LP, Zhou Q, Wu Q, Chen JC, Chen GQ (2012) Production and characterization of poly (3-hydroxypropionate-co-4-hydroxybutyrate) with fully controllable structures by recombinant Escherichia coli containing an engineered pathway. Metab Eng 14:317–324CrossRefGoogle Scholar
  31. Nakamura S, Kunioka M, Doi Y (1991) Biosynthesis and characterization of bacterial poly (3-hydroxybutyrate-co-3-hydroxypropionate). Macromol Rep 28:15–24Google Scholar
  32. Nomura CT, Taguchi K, Gan Z, Kuwabara K, Tanaka T, Takase K, Doi Y (2005) Expression of 3-ketoacyl-acyl carrier protein reductase (fabG) genes enhances production of polyhydroxyalkanoate copolymer from glucose in recombinant Escherichia coli JM109. Appl Environ Microbiol 71:4297–4306. doi:10.1128/AEM.71.8.4297-4306.2005 CrossRefGoogle Scholar
  33. Nomura CT, Taguchi K, Taguchi S, Doi Y (2004) Coexpression of genetically-engineered 3-ketoacyl-ACP synthase III (fabH) and polyhydroxyalkanoate synthase (phaC) genes leads to short-chain-length-medium-chain-length polyhydroxyalkanoate copolymer production from glucose in Escherichia coli JM109. Appl Environ Microbiol 70:999–1007CrossRefGoogle Scholar
  34. Park SJ, Choi J, Lee SY (2005) Engineering of Escherichia coli fatty acid metabolism for the production of polyhydroxyalkanoates. Enzym Microb Technol 36:579–588CrossRefGoogle Scholar
  35. Park SJ, Lee TW, Lim SC, Kim TW, Lee H, Kim MK, Lee SH, Song BK, Lee SY (2012) Biosynthesis of polyhydroxyalkanoates containing 2-hydroxybutyrate from unrelated carbon source by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 93:273–283. doi:10.1007/s00253-011-3530-x CrossRefGoogle Scholar
  36. Park SJ, Yang TH, Kang HO, Lee SH, Lee EJ, Kim TW, Lee SY (2008) Mutants of PHA synthase from Pseudomonas sp. 6-19 and method for preparing lactate homopolymer or copolymer using the same. WO Patent 2,008,062,999Google Scholar
  37. Qi Q, Rehm BH, Steinbüchel A (1997) Synthesis of poly(3-hydroxyalkanoates) in Escherichia coli expressing the PHA synthase gene phaC2 from Pseudomonas aeruginosa: comparison of PhaC1 and PhaC2. FEMS Microbiol Lett 157:155–162CrossRefGoogle Scholar
  38. Qiu YZ, Han J, Guo JJ, Chen GQ (2005) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from gluconate and glucose by recombinant Aeromonas hydrophila and Pseudomonas putida. Biotechnol Lett 27:1381–1386. doi:10.1007/s10529-005-3685-6 CrossRefGoogle Scholar
  39. Rathnasingh C, Raj SM, Jo JE, Park S (2009) Development and evaluation of efficient recombinant Escherichia coli strains for the production of 3-hydroxypropionic acid from glycerol. Biotechnol Bioeng 104:729–739. doi:10.1002/bit.22429 Google Scholar
  40. Rathnasingh C, Raj SM, Lee Y, Catherine C, Ashok S, Park S (2012) Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains. J Biotechnol 157:633–640. doi:10.1016/j.jbiotec.2011.06.008 CrossRefGoogle Scholar
  41. Rehm BH, Mitsky TA, Steinbüchel A (2001) Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Appl Environ Microbiol 67:3102–3109. doi:10.1128/AEM.67.7.3102-3109.2001 CrossRefGoogle Scholar
  42. Rehm BH, Steinbüchel A (2001) Heterologous expression of the acyl-acyl carrier protein thioesterase gene from the plant Umbellularia californica mediates polyhydroxyalkanoate biosynthesis in recombinant Escherichia coli. Appl Microbiol Biotechnol 55:205–209CrossRefGoogle Scholar
  43. Renner G, Pongratz K, Braunegg G (1996) Production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) by Comamonas testosteronii A3. Food Technol Biotech 34:2–3Google Scholar
  44. Södergård A, Stolt M (2002) Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci 27:1123–1163CrossRefGoogle Scholar
  45. Schubert P, Steinbüchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol 170:5837–5847Google Scholar
  46. Slater SC, Voige WH, Dennis DE (1988) Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-beta-hydroxybutyrate biosynthetic pathway. J Bacteriol 170:4431–4436Google Scholar
  47. Söhling B, Gottschalk G (1996) Molecular analysis of the anaerobic succinate degradation pathway in Clostridium kluyveri. J Bacteriol 178:871–880Google Scholar
  48. Song S, Hein S, Steinbüchel A (1999) Production of poly (4-hydroxybutyric acid) by fed-batch cultures of recombinant strains of Escherichia coli. Biotechnol Lett 21:193–197CrossRefGoogle Scholar
  49. Song SS, Ma H, Gao ZX, Jia ZH, Zhang X (2005) Construction of recombinant Escherichia coli strains producing poly (4-hydroxybutyric acid) homopolyester from glucose. Wei Sheng Wu Xue Bao 45:382–386Google Scholar
  50. Steinbüchel A, Lütke-Eversloh T (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem Eng J 16:81–96CrossRefGoogle Scholar
  51. Steinbüchel A, Pieper U (1992) Production of a copolyester of 3-hydroxybutyric acid and 3-hydroxyvaleric acid from single unrelated carbon sources by a mutant of Alcaligenes eutrophus. Appl Microbiol Biotechnol 37:1–6Google Scholar
  52. Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228CrossRefGoogle Scholar
  53. Steinbüchel A, Aerts K, Babel W, Follner C, Liebergesell M, Madkour MH, Mayer F, Pieper-Furst U, Pries A, Valentin HE, Roman W (1995) Considerations on the structure and biochemistry of bacterial polyhydroxyalkanoic acid inclusions. Can J Microbiol 41(Suppl 1):94–105CrossRefGoogle Scholar
  54. Taguchi S, Yamada M, Matsumoto K, Tajima K, Satoh Y, Munekata M, Ohno K, Kohda K, Shimamura T, Kambe H, Obata S (2008) A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme. Proc Natl Acad Sci U S A 105:17323–17327. doi:10.1073/pnas.0805653105 CrossRefGoogle Scholar
  55. Timm A, Steinbüchel A (1990) Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl Environ Microbiol 56:3360–3367Google Scholar
  56. Valentin HE, Dennis D (1997) Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in recombinant Escherichia coli grown on glucose. J Biotechnol 58:33–38CrossRefGoogle Scholar
  57. Valentin HE, Mitsky TA, Mahadeo DA, Tran M, Gruys KJ (2000) Application of a propionyl coenzyme A synthetase for poly(3-hydroxypropionate-co-3-hydroxybutyrate) accumulation in recombinant Escherichia coli. Appl Environ Microbiol 66:5253–5258CrossRefGoogle Scholar
  58. Wang Q, Liu C, Xian M, Zhang Y, Zhao G (2012a) Biosynthetic pathway for poly(3-hydroxypropionate) in recombinant Escherichia coli. J Microbiol 50:693–697. doi:10.1007/s12275-012-2234-y CrossRefGoogle Scholar
  59. Wang Q, Tappel RC, Zhu C, Nomura CT (2012b) Development of a new strategy for production of medium-chain-length polyhydroxyalkanoates by recombinant Escherichia coli via inexpensive non-fatty acid feedstocks. Appl Environ Microbiol 78:519–527. doi:10.1128/AEM.07020-11 CrossRefGoogle Scholar
  60. Yamada M, Matsumoto K, Nakai T, Taguchi S (2009) Microbial production of lactate-enriched poly[(R)-lactate-co-(R)-3-hydroxybutyrate] with novel thermal properties. Biomacromolecules 10:677–681. doi:10.1021/bm8013846 CrossRefGoogle Scholar
  61. Yang TH, Jung YK, Kang HO, Kim TW, Park SJ, Lee SY (2011) Tailor-made type II Pseudomonas PHA synthases and their use for the biosynthesis of polylactic acid and its copolymer in recombinant Escherichia coli. Appl Microbiol Biotechnol 90:603–614. doi:10.1007/s00253-010-3077-2 CrossRefGoogle Scholar
  62. Yang TH, Kim TW, Kang HO, Lee SH, Lee EJ, Lim SC, Oh SO, Song AJ, Park SJ, Lee SY (2010) Biosynthesis of polylactic acid and its copolymers using evolved propionate CoA transferase and PHA synthase. Biotechnol Bioeng 105:150–160CrossRefGoogle Scholar
  63. Zhou Q, Shi ZY, Meng DC, Wu Q, Chen JC, Chen GQ (2011) Production of 3-hydroxypropionate homopolymer and poly(3-hydroxypropionate-co-4-hydroxybutyrate) copolymer by recombinant Escherichia coli. Metab Eng 13:777–785. doi:10.1016/j.ymben.2011.10.002 CrossRefGoogle Scholar
  64. Zhou XY, Yuan XX, Shi ZY, Meng DC, Jiang WJ, Wu LP, Chen JC, Chen GQ (2012) Hyperproduction of poly(4-hydroxybutyrate) from glucose by recombinant Escherichia coli. Microb Cell Fact 11:54. doi:10.1186/1475-2859-11-54 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Qian Wang
    • 1
  • Qianqian Zhuang
    • 1
  • Quanfeng Liang
    • 1
  • Qingsheng Qi
    • 1
  1. 1.National Glycoengineering Research Center, State Key Laboratory of Microbial TechnologyShandong UniversityJinanPeople’s Republic of China

Personalised recommendations