Applied Microbiology and Biotechnology

, Volume 97, Issue 7, pp 2761–2772 | Cite as

Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation

  • Won-Heong Lee
  • Myoung-Dong Kim
  • Yong-Su Jin
  • Jin-Ho Seo
Mini-Review

Abstract

Efficient regeneration of NADPH is one of the limiting factors that constrain the productivity of biotransformation processes. In order to increase the availability of NADPH for enhanced biotransformation by engineered Escherichia coli, modulation of the pentose phosphate pathway and amplification of the transhydrogenases system have been conventionally attempted as primary solutions. Recently, other approaches for stimulating NADPH regeneration during glycolysis, such as replacement of native glyceradehdye-3-phosphate dehydrogenase (GAPDH) with NADP-dependent GAPDH from Clostridium acetobutylicum and introduction of NADH kinase catalyzing direct phosphorylation of NADH to NADPH from Saccharomyces cerevisiae, were attempted and resulted in remarkable impacts on NADPH-dependent bioprocesses. This review summarizes several metabolic engineering approaches used for improving the NADPH regenerating capacity in engineered E. coli for whole-cell-based bioprocesses and discusses the key features and progress of those attempts.

Keywords

Biotransformation process Engineered Escherichia coli NADPH regeneration Pentose phosphate pathway Transhydrogenase NADP-dependent glyceradehdye-3-phosphate dehydrogenase NAD(H) kinase 

References

  1. Akinterinwa O, Cirino PC (2011) Anaerobic obligatory xylitol production in Escherichia coli strains devoid of native fermentation pathways. Appl Environ Microbiol 77:706–709CrossRefGoogle Scholar
  2. Alper H, Jin YS, Moxley JF, Stephanopoulos G (2005) Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng 7:155–164CrossRefGoogle Scholar
  3. Bastian S, Liu X, Meyerowitz JT, Snow CD, Chen MMY, Arnold FH (2011) Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng 13:345–352CrossRefGoogle Scholar
  4. Boonstra B, French CE, Wainwright I, Bruce NC (1999) The udhA gene of Escherichia coli encodes a soluble pyridine nucleotide transhydrogenase. J Bacteriol 181:1030–1034Google Scholar
  5. Boonstra B, Rathbone DA, French CE, Walker EH, Bruce NC (2000) Cofactor regeneration by a soluble pyridine nucleotide transhydrogenase for biological production of hydromorphone. Appl Environ Microbiol 66:5156–5166CrossRefGoogle Scholar
  6. Canonaco F, Hess TA, Heri S, Wang T, Szyperski T, Sauer U (2001) Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA. FEMS Microbiol Lett 204:247–252CrossRefGoogle Scholar
  7. Cao Z, Song P, Xu Q, Su R, Zhu G (2011) Overexpression and biochemical characterization of soluble pyridine nucleotide transhydrogenase from Escherichia coli. FEMS Microbiol Lett 320:9–14CrossRefGoogle Scholar
  8. Chemler JA, Fowler ZL, McHugh KP, Koffas MAG (2010) Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metab Eng 12:96–104CrossRefGoogle Scholar
  9. Chin JW, Khankal R, Monroe CA, Maranas CD, Cirino PC (2008) Analysis of NADPH supply during xylitol production by engineered Escherichia coli. Biotechnol Bioeng 102:209–220CrossRefGoogle Scholar
  10. De Mey M, De Maeseneire S, Soetaert W, Vandamme E (2007) Minimizing acetate formation in E. coli fermentations. J Ind Microbiol Biotechnol 34:689–700CrossRefGoogle Scholar
  11. Drepper T, Eggert T, Hummel W, Leggewie C, Pohl M, Rosenau F, Wilhelm S, Jaeger KE (2006) Novel biocatalysts for white biotechnology. Biotechnol J 1:777–786CrossRefGoogle Scholar
  12. Duetz WA, van Beilen JB, Witholt B (2001) Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. Curr Opin Biotechnol 12:419–425CrossRefGoogle Scholar
  13. Fasan R, Crook NC, Peters MW, Meinhold P, Buelter T, Landwehr M, Cirino PC, Arnold FH (2011) Improved product–per–glucose yields in P450–dependent propane biotransformations using engineered Escherichia coli. Biotechnol Bioeng 108:500–510CrossRefGoogle Scholar
  14. Holm AK, Blank LM, Oldiges M, Schmid A, Solem C, Jensen PR, Vemuri GN (2010) Metabolic and transcriptional response to cofactor perturbations in Escherichia coli. J Biol Chem 285:17498–17506CrossRefGoogle Scholar
  15. Johannes TW, Woodyer RD, Zhao H (2006) Efficient regeneration of NADPH using an engineered phosphite dehydrogenase. Biotechnol Bioeng 96:18–26CrossRefGoogle Scholar
  16. Kabus A, Georgi T, Wendisch V, Bott M (2007) Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves l-lysine formation. Appl Microbiol Biotechnol 75:47–53CrossRefGoogle Scholar
  17. Kawai S, Mori S, Mukai T, Hashimoto W, Murata K (2001) Molecular characterization of Escherichia coli NAD kinase. Eur J Biochem 268:4359–4365CrossRefGoogle Scholar
  18. Kwon YD, Kwon OH, Lee HS, Kim P (2007) The effect of NADP–dependent malic enzyme expression and anaerobic C4 metabolism in Escherichia coli compared with other anaplerotic enzymes. J Appl Microbiol 103:2340–2345CrossRefGoogle Scholar
  19. Lee WH, Park JB, Park K, Kim MD, Seo JH (2007) Enhanced production of ε-caprolactone by overexpression of NADPH-regenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone monooxygenase gene. Appl Microbiol Biotechnol 76:329–338CrossRefGoogle Scholar
  20. Lee HC, Kim JS, Jang W, Kim SY (2009) Thymidine production by overexpressing NAD+ kinase in an Escherichia coli recombinant strain. Biotechnol lett 31:1929–1936CrossRefGoogle Scholar
  21. Lee HC, Kim JS, Jang W, Kim SY (2010) High NADPH/NADP+ ratio improves thymidine production by a metabolically engineered Escherichia coli strain. J Biotechnol 149:24–32CrossRefGoogle Scholar
  22. Lee WH, Chin YW, Han NS, Kim MD, Seo JH (2011) Enhanced production of GDP-l-fucose by overexpression of NADPH regenerator in recombinant Escherichia coli. Appl Microbiol Biotechnol 91:967–976CrossRefGoogle Scholar
  23. Lee WH, Kim JW, Park EH, Han NS, Kim MD, Seo JH (2013) Effects of NADH kinase on NADPH-dependent biotransformation processes in Escherichia coli. Appl Microbiol Biotechnol 97:1561–1569Google Scholar
  24. Li ZJ, Cai L, Wu Q, Chen GQ (2009) Overexpression of NAD kinase in recombinant Escherichia coli harboring the phbCAB operon improves poly (3-hydroxybutyrate) production. Appl Microbiol Biotechnol 83:939–947CrossRefGoogle Scholar
  25. Lim SJ, Jung YM, Shin HD, Lee YH (2002) Amplification of the NADPH-related genes zwf and gnd for the oddball biosynthesis of PHB in an E. coli transformant harboring a cloned phbCAB operon. J Biosci Bioeng 93:543–549Google Scholar
  26. Martínez I, Zhu J, Lin H, Bennett GN, San KY (2008) Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways. Metab Eng 10:352–359CrossRefGoogle Scholar
  27. Outten CE, Culotta VC (2003) A novel NADH kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae. EMBO J 22:2015–2024CrossRefGoogle Scholar
  28. Park JB (2007) Oxygenase-based whole-cell biocatalysis in organic synthesis. J Microbiol Biotechnol 17:379–392Google Scholar
  29. Park H, Jung J, Choi H, Uhm KN, Kim HK (2010) Enantioselective bioconversion using Escherichia coli cells expressing Saccharomyces cerevisiae reductase and Bacillus subtilis glucose dehydrogenase. J Microbiol Biotechnol 20:1300–1306CrossRefGoogle Scholar
  30. Rathnasingh C, Raj SM, Lee Y, Catherine C, Ashok S, Park S (2012) Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli. J Biotechnol 157:633–640CrossRefGoogle Scholar
  31. Rioz-Martínez A, Kopacz M, De Gonzalo G, Pazmiño DET, Gotor V, Fraaije MW (2011) Exploring the biocatalytic scope of a bacterial flavin-containing monooxygenase. Org Biomol Chem 9:1337–1341CrossRefGoogle Scholar
  32. Sanchez AM, Andrews J, Hussein I, Bennett GN, San KY (2006) Effect of overexpression of a soluble pyridine nucleotide transhydrogenase (UdhA) on the production of poly(3-hydroxybutyrate) in Escherichia coli. Biotechnol Prog 22:420–425CrossRefGoogle Scholar
  33. Sauer U, Lasko DR, Fiaux J, Hochuli M, Glaser R, Szyperski T, Wüthrich K, Bailey JE (1999) Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central carbon metabolism. J Bacteriol 181:6679–6688Google Scholar
  34. Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E (2004) The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 279:6613–6619CrossRefGoogle Scholar
  35. Schewe H, Kaup BA, Schrader J (2008) Improvement of P450 BM-3 whole-cell biocatalysis by integrating heterologous cofactor regeneration combining glucose facilitator and dehydrogenase in E. coli. Appl Microbiol Biotechnol 78:55–65CrossRefGoogle Scholar
  36. Shi A, Zhu X, Lu J, Zhang X, Ma Y (2013) Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Metab Eng 16:1–10CrossRefGoogle Scholar
  37. Siedler S, Bringer S, Bott M (2011) Increased NADPH availability in Escherichia coli: improvement of the product per glucose ratio in reductive whole-cell biotransformation. Appl Microbiol Biotechnol 92:929–937CrossRefGoogle Scholar
  38. Strand MK, Stuart GR, Longley MJ, Graziewicz MA, Dominick OC, Copeland WC (2003) POS5 gene of Saccharomyces cerevisiae encodes a mitochondrial NADH kinase required for stability of mitochondrial DNA. Eukaryot Cell 2:809–820CrossRefGoogle Scholar
  39. van der Donk WA, Zhao H (2003) Regeneration of cofactors for use in biocatalysis. Curr Opin Biotechnol 14:583–589CrossRefGoogle Scholar
  40. Wang B, Wang P, Zheng E, Chen X, Zhao H, Song P, Su R, Li X, Zhu G (2011) Biochemical properties and physiological roles of NADP-dependent malic enzyme in Escherichia coli. J Microbiol 49:797–802CrossRefGoogle Scholar
  41. Weckbecker A, Hummel W (2004) Improved synthesis of chiral alcohols with Escherichia coli cells co-expressing pyridine nucleotide transhydrogenase, NADP+-dependent alcohol dehydrogenase and NAD+-dependent formate dehydrogenase. Biotechnol Lett 26:1739–1744CrossRefGoogle Scholar
  42. Woodyer R, Zhao H, van der Donk WA (2005) Mechanistic investigation of a highly active phosphite dehydrogenase mutant and its application for NADPH regeneration. FEBS J 272:3816–3827CrossRefGoogle Scholar
  43. Xu Z, Jing K, Liu Y, Cen P (2007) High-level expression of recombinant glucose dehydrogenase and its application in NADPH regeneration. J Ind Microbiol Biotechnol 34:83–90CrossRefGoogle Scholar
  44. Zhang JD, Li AT, Yu HL, Imanaka T, Xu JH (2011) Synthesis of optically pure S-sulfoxide by Escherichia coli transformant cells coexpressing the P450 monooxygenase and glucose dehydrogenase genes. J Ind Microbiol Biotechnol 38:633–641CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Won-Heong Lee
    • 1
    • 2
  • Myoung-Dong Kim
    • 3
  • Yong-Su Jin
    • 2
  • Jin-Ho Seo
    • 1
  1. 1.Department of Agricultural Biotechnology and Center for Food and BioconvergenceSeoul National UniversitySeoulKorea
  2. 2.Department of Food Science and Human Nutrition and Institute for Genomic BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Department of Food Science and BiotechnologyKangwon National UniversityChuncheonKorea

Personalised recommendations