Applied Microbiology and Biotechnology

, Volume 97, Issue 7, pp 2805–2815 | Cite as

Extrachromosomal, extraordinary and essential—the plasmids of the Roseobacter clade

  • Jörn PetersenEmail author
  • Oliver Frank
  • Markus Göker
  • Silke Pradella


The alphaproteobacterial Roseobacter clade (Rhodobacterales) is one of the most important global players in carbon and sulfur cycles of marine ecosystems. The remarkable metabolic versatility of this bacterial lineage provides access to diverse habitats and correlates with a multitude of extrachromosomal elements. Four non-homologous replication systems and additional subsets of individual compatibility groups ensure the stable maintenance of up to a dozen replicons representing up to one third of the bacterial genome. This complexity presents the challenge of successful partitioning of all low copy number replicons. Based on the phenomenon of plasmid incompatibility, we developed molecular tools for target-oriented plasmid curing and could generate customized mutants lacking hundreds of genes. This approach allows one to analyze the relevance of specific replicons including so-called chromids that are known as lifestyle determinants of bacteria. Chromids are extrachromosomal elements with a chromosome-like genetic imprint (codon usage, GC content) that are essential for competitive survival in the natural habitat, whereas classical dispensable plasmids exhibit a deviating codon usage and typically contain type IV secretion systems for conjugation. The impact of horizontal plasmid transfer is exemplified by the scattered occurrence of the characteristic aerobic anoxygenic photosynthesis among the Roseobacter clade and the recently reported transfer of the 45-kb photosynthesis gene cluster to extrachromosomal elements. Conjugative transmission may be the crucial driving force for rapid adaptations and hence the ecological prosperousness of this lineage of pink bacteria.


Plasmid classification Compatibility Chromid concept Plasmid curing Conjugation Rhodobacterales 



We thank Victoria Michael and Orsola Päuker for excellent technical assistance, Elke Petersen for graphical assistance, and Henner Brinkmann as well as Irene Wagner-Döbler for valuable comments on the manuscript. Finally, we thank two anonymous reviewers for their constructive criticism. This work including a PhD stipend for O. F. was supported by the Transregional Collaborative Research Center "Roseobacter" (Transregio TRR 51) of the Deutsche Forschungsgemeinschaft.


  1. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006CrossRefGoogle Scholar
  2. Buchan A, González JM, Moran MA (2005) Overview of the marine Roseobacter lineage. Appl Environ Microbiol 71:5665–5677CrossRefGoogle Scholar
  3. Berger M, Brock NL, Liesegang H, Dogs M, Preuth I, Simon M, Dickschat JS, Brinkhoff T (2012) Genetic analysis of the upper phenylacetate catabolic pathway in the production of tropodithietic acid by Phaeobacter gallaeciensis. Appl Environ Microbiol 78:3539–3551CrossRefGoogle Scholar
  4. Biebl H, Allgaier M, Tindall BJ, Koblizek M, Lünsdorf H, Pukall R, Wagner-Döbler I (2005) Dinoroseobacter shibae gen. nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. Int J Syst Evol Microbiol 55:1089–1096CrossRefGoogle Scholar
  5. Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462CrossRefGoogle Scholar
  6. Brinkhoff T, Bach G, Heidorn T, Liang L, Schlingloff A, Simon M (1994) Antibiotic production by a Roseobacter clade-affiliated species from the German Wadden Sea and its antagonistic effects on indigenous isolates. Appl Environ Microbiol 70:2560–2565CrossRefGoogle Scholar
  7. Brinkhoff T, Giebel HA, Simon M (2008) Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Arch Microbiol 189:531–539CrossRefGoogle Scholar
  8. Brom S, de los García Santos A, Stepkowsky T, Flores M, Dávila G, Romero D, Palacios R (1992) Different plasmids of Rhizobium leguminosarum bv. phaseoli are required for optimal symbiotic performance. J Bacteriol 174:5183–5189Google Scholar
  9. Cabello F, Timmis K, Cohen SN (1976) Replication control in a composite plasmid constructed by in vitro linkage of two distinct replicons. Nature 259:285–290CrossRefGoogle Scholar
  10. Cao TB, Saier MH (2001) Conjugal type IV macromolecular transfer systems of Gram-negative bacteria: organismal distribution, structural constraints and evolutionary conclusions. Microbiology 147:3201–3214Google Scholar
  11. Cascales E, Christie PJ (2003) The versatile bacterial type IV secretion systems. Nat Rev Microbiol 1:137–149CrossRefGoogle Scholar
  12. Cavalli LL, Lederberg J, Lederberg EM (1953) An infective factor controlling sex compatibility in Bacterium coli. J Gen Microbiol 8:89–103Google Scholar
  13. Cevallos MA, Cervantes-Rivera R, Gutiérrez-Ríos RM (2008) The repABC plasmid family. Plasmid 60:19–37CrossRefGoogle Scholar
  14. Chain PS, Denef VJ, Konstantinidis KT, Vergez LM, Agulló L, Reyes VL, Hauser L, Córdova M, Gómez L, González M, Land M, Lao V, Larimer F, LiPuma JJ, Mahenthiralingam E, Malfatti SA, Marx CJ, Parnell JJ, Ramette A, Richardson P, Seeger M, Smith D, Spilker T, Sul WJ, Tsoi TV, Ulrich LE, Zhulin IB, Tiedje JM (2006) Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc Natl Acad Sci U S A 103:15280–15287CrossRefGoogle Scholar
  15. Christie PJ (2004) Type IV secretion: the Agrobacterium VirB/D4 and related conjugation systems. Biochim Biophys Acta 1694:219–234CrossRefGoogle Scholar
  16. Christie PJ, Atmakuri K, Krishnamoorthy V, Jakubowski S, Cascales E (2005) Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59:451–485CrossRefGoogle Scholar
  17. Datta N, Hedges RW (1971) Compatibility groups among fi-R factors. Nature 234:222–223CrossRefGoogle Scholar
  18. D'Alvise PW, Lillebø S, Prol-Garcia MJ, Wergeland HI, Nielsen KF, Bergh Ø, Gram L (2012) Phaeobacter gallaeciensis reduces Vibrio anguillarum in cultures of microalgae and rotifers, and prevents vibriosis in cod larvae. PLoS One 7:e43996CrossRefGoogle Scholar
  19. D’Elia MA, Pereira MP, Brown ED (2009) Are essential genes really essential? Trends Microbiol 17:433–438CrossRefGoogle Scholar
  20. Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145CrossRefGoogle Scholar
  21. Errington J, Bath J, Wu LJ (2001) DNA transport in bacteria. Nat Rev Mol Cell Biol 2:538–545CrossRefGoogle Scholar
  22. Gelvin SB (2000) Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu Rev Plant Physiol Plant Mol Biol 51:223–256CrossRefGoogle Scholar
  23. Genetello C, Van Larebeke N, Holsters M, De Picker A, Van Montagu M, Schell J (1977) Ti plasmids of Agrobacterium as conjugative plasmids. Nature 265:561–563CrossRefGoogle Scholar
  24. Geng H, Belas R (2010) Molecular mechanisms underlying roseobacter-phytoplankton symbioses. Curr Opin Biotechnol 21:332–338CrossRefGoogle Scholar
  25. Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, Maruf M, Hutchison CA 3rd, Smith HO, Venter JC (2006) Essential genes of a minimal bacterium. Proc Natl Acad Sci U S A 103:425–430CrossRefGoogle Scholar
  26. González V, Santamaría RI, Bustos P, Hernández-González I, Medrano-Soto A, Moreno-Hagelsieb G, Janga SC, Ramírez MA, Jiménez-Jacinto V, Collado-Vides J, Dávila G (2006) The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci U S A 103:3834–3839CrossRefGoogle Scholar
  27. Guo X, Flores M, Mavingui P, Fuentes SI, Hernández G, Dávila G, Palacios R (2003) Natural genomic design in Sinorhizobium meliloti: novel genomic architectures. Genome Res 13:1810–1817Google Scholar
  28. Harrison PW, Lower RP, Kim NK, Young JP (2010) Introducing the bacterial 'chromid': not a chromosome, not a plasmid. Trends Microbiol 18:141–148CrossRefGoogle Scholar
  29. Hynes MF, Quandt J, O'Connell MP, Pühler A (1989) Direct selection for curing and deletion of Rhizobium plasmids using transposons carrying the Bacillus subtilis sacB gene. Gene 78:111–120CrossRefGoogle Scholar
  30. Joyce AR, Reed JL, White A, Edwards R, Osterman A, Baba T, Mori H, Lesely SA, Palsson BØ, Agarwalla S (2006) Experimental and computational assessment of conditionally essential genes in Escherichia coli. J Bacteriol 188:8259–8271CrossRefGoogle Scholar
  31. Juhas M, Crook DW, Hood DW (2008) Type IV secretion systems: tools of bacterial horizontal gene transfer and virulence. Cell Microbiol 10:2377–2386CrossRefGoogle Scholar
  32. Kalhöfer D, Thole S, Voget S, Lehmann R, Liesegang H, Wollher A, Daniel R, Simon M, Brinkhoff T (2012) Comparative genome analysis and genome-guided physiological analysis of Roseobacter litoralis. BMC Genomics 12:324CrossRefGoogle Scholar
  33. Kaimer C, Graumann PL (2011) Players between the worlds: multifunctional DNA translocases. Curr Opin Microbiol 14:719–725CrossRefGoogle Scholar
  34. Langille MG, Brinkman FS (2009) IslandViewer: an integrated interface for computational identification and visualization of genomic islands. Bioinformatics 25:664–665CrossRefGoogle Scholar
  35. Langille MG, Hsiao WW, Brinkman FS (2010) Detecting genomic islands using bioinformatics approaches. Nat Rev Microbiol 8:373–382CrossRefGoogle Scholar
  36. Lawley TD, Klimke WA, Gubbins MJ, Frost LS (2003) F factor conjugation is a true type IV secretion system. FEMS Microbiol Lett 224:1–15CrossRefGoogle Scholar
  37. Lawrence JG, Ochman H (1997) Amelioration of bacterial genomes: rates of change and exchange. J Mol Evol 44:383–397CrossRefGoogle Scholar
  38. Lukjancenko O, Wassenaar TM, Ussery DW (2010) Comparison of 61 sequenced Escherichia coli genomes. Microb Ecol 60:708–720CrossRefGoogle Scholar
  39. Martens T, Heidorn T, Pukall R, Simon M, Tindall BJ, Brinkhoff T (2006) Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera. Int J Syst Evol Microbiol 56:1293–1304CrossRefGoogle Scholar
  40. Mathis JN, Barbour WM, Elkan GH (1985) Effect of Sym plasmid curing on symbiotic effectiveness in Rhizobium fredii. Appl Environ Microbiol 49:1385–1388Google Scholar
  41. Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R (2005) The microbial pan-genome. Curr Opin Genet Dev 15:589–594CrossRefGoogle Scholar
  42. Moran MA, Belas R, Schell MA, González JM, Sun F, Sun S, Binder BJ, Edmonds J, Ye W, Orcutt B, Howard EC, Meile C, Palefsky W, Goesmann A, Ren Q, Paulsen I, Ulrich LE, Thompson LS, Saunders E, Buchan A (2007) Ecological genomics of marine Roseobacters. Appl Environ Microbiol 73:4559–4569CrossRefGoogle Scholar
  43. Mott ML, Berger JM (2007) DNA replication initiation: mechanisms and regulation in bacteria. Nat Rev Microbiol 5:343–354CrossRefGoogle Scholar
  44. Newton RJ, Griffin LE, Bowles KM, Meile C, Gifford S, Givens CE, Howard EC, King E, Oakley CA, Reisch CR, Rinta-Kanto JM, Sharma S, Sun S, Varaljay V, Vila-Costa M, Westrich JR, Moran MA (2010) Genome characteristics of a generalist marine bacterial lineage. ISME J 4:784–798CrossRefGoogle Scholar
  45. Ni B, Du Z, Guo Z, Zhang Y, Yang R (2008) Curing of four different plasmids in Yersinia pestis using plasmid incompatibility. Lett Appl Microbiol 47:235–240CrossRefGoogle Scholar
  46. Novick RP, Clowes RC, Cohen SN, Curtiss R 3rd, Datta N, Falkow S (1976) Uniform nomenclature for bacterial plasmids: a proposal. Bacteriol Rev 40:168–189Google Scholar
  47. Ogata H, Renesto P, Audic S, Robert C, Blanc G, Fournier PE, Parinello H, Claverie JM, Raoult D (2005) The genome sequence of Rickettsia felis identifies the first putative conjugative plasmid in an obligate intracellular parasite. PLoS Biol 3:e248CrossRefGoogle Scholar
  48. Petersen J, Brinkmann H, Pradella S (2009) Diversity and evolution of repABC type plasmids in Rhodobacterales. Environ Microbiol 11:2627–2638CrossRefGoogle Scholar
  49. Petersen J, Brinkmann H, Berger M, Brinkhoff T, Päuker O, Pradella S (2011) Origin and evolution of a novel DnaA-like plasmid replication type in Rhodobacterales. Mol Biol Evol 28:1229–1240CrossRefGoogle Scholar
  50. Petersen J (2011) Phylogeny and compatibility: plasmid classification in the genomics era. Arch Microbiol 193:313–321Google Scholar
  51. Petersen J, Brinkmann H, Bunk B, Michael V, Päuker O, Pradella S (2012) Think pink: photosynthesis, plasmids and the Roseobacter clade. Environ Microbiol 14:2661–2672CrossRefGoogle Scholar
  52. Petit A, Tempe J, Kerr A, Holsters M, Van Montagu M, Schell J (1978) Substrate induction of conjugative activity of Agrobacterium tumefaciens Ti plasmids. Nature 271:570–572CrossRefGoogle Scholar
  53. Piekarski T, Buchholz I, Drepper T, Schobert M, Wagner-Doebler I, Tielen P, Jahn D (2009) Genetic tools for the investigation of Roseobacter clade bacteria. BMC Microbiol 9:265CrossRefGoogle Scholar
  54. Pinto UM, Pappas KM, Winans SC (2012) The ABCs of plasmid replication and segregation. Nat Rev Microbiol 10:755–765CrossRefGoogle Scholar
  55. Planet PJ, Kachlany SC, DeSalle R, Figurski DH (2001) Phylogeny of genes for secretion NTPases: identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc Natl Acad Sci U S A 98:2503–2508CrossRefGoogle Scholar
  56. Poppe C, Gyles CL (1988) Tagging and elimination of plasmids in Salmonella of avian origin. Vet Microbiol 18:73–87CrossRefGoogle Scholar
  57. Porsby CH, Nielsen KF, Gram L (2008) Phaeobacter and Ruegeria species of the Roseobacter clade colonize separate niches in a Danish Turbot (Scophthalmus maximus)-rearing farm and antagonize Vibrio anguillarum under different growth conditions. Appl Environ Microbiol 74:7356–7364CrossRefGoogle Scholar
  58. Pradella S, Päuker O, Petersen J (2010) Genome organization of the marine Roseobacter clade member Marinovum algicola. Arch Microbiol 192:115–126CrossRefGoogle Scholar
  59. R Development Core Team (2011) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL: Accessed 29 Jan 2013
  60. Seyedsayamdost MR, Case RJ, Kolter R, Clardy J (2011a) The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis. Nat Chem 3:331–335CrossRefGoogle Scholar
  61. Seyedsayamdost MR, Carr G, Kolter R, Clardy J (2011b) Roseobacticides: small molecule modulators of an algal-bacterial symbiosis. J Am Chem Soc 133:18343–18349CrossRefGoogle Scholar
  62. Sharp PM, Li WH (1986) Codon usage in regulatory genes in Escherichia coli does not reflect selection for 'rare' codons. Nucleic Acids Res 14:7737–7749CrossRefGoogle Scholar
  63. Shiba T (1991) Roseobacter litoralis gen-. nov., sp-. nov., and Roseobacter denitrificans sp-. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll -a. Syst Appl Microbiol 14:140–145CrossRefGoogle Scholar
  64. Slater SC, Goldman BS, Goodner B, Setubal JC, Farrand SK, Nester EW, Burr TJ, Banta L, Dickerman AW, Paulsen I, Otten L, Suen G, Welch R, Almeida NF, Arnold F, Burton OT, Du Z, Ewing A, Godsy E, Heisel S, Houmiel KL, Jhaveri J, Lu J, Miller NM, Norton S, Chen Q, Phoolcharoen W, Ohlin V, Ondrusek D, Pride N, Stricklin SL, Sun J, Wheeler C, Wilson L, Zhu H, Wood DW (2009) Genome sequences of three agrobacterium biovars help elucidate the evolution of multichromosome genomes in bacteria. J Bacteriol 191:2501–2511CrossRefGoogle Scholar
  65. Smillie C, Garcillán-Barcia MP, Francia MV, Rocha EP, de la Cruz F (2010) Mobility of plasmids. Microbiol Mol Biol Rev 74:434–452CrossRefGoogle Scholar
  66. Stolz A (2009) Molecular characteristics of xenobiotic-degrading sphingomonads. Appl Microbiol Biotechnol 81:793–811CrossRefGoogle Scholar
  67. Thole S, Kalhöfer D, Voget S, Berger M, Engelhardt T, Liesegang H, Wollherr A, Kjelleberg S, Daniel R, Simon M, Thomas T, Brinkhoff T (2012) Phaeobacter gallaeciensis genomes from globally opposite locations reveal high similarity of adaptation to surface life. ISME J 6:2229–2244CrossRefGoogle Scholar
  68. Tomasch J, Gohl R, Bunk B, Diez MS, Wagner-Döbler I (2011) Transcriptional response of the photoheterotrophic marine bacterium Dinoroseobacter shibae to changing light regimes. ISME J 5:1957–1968CrossRefGoogle Scholar
  69. Uraji M, Suzuki K, Yoshida K (2002) A novel plasmid curing method using incompatibility of plant pathogenic Ti plasmids in Agrobacterium tumefaciens. Genes Genet Syst 77:1–9CrossRefGoogle Scholar
  70. Wagner-Döbler I, Biebl H (2006) Environmental biology of the marine Roseobacter lineage. Annu Rev Microbiol 60:255–280CrossRefGoogle Scholar
  71. Wagner-Döbler I, Ballhausen B, Berger M, Brinkhoff T, Buchholz I, Bunk B, Cypionka H, Daniel R, Drepper T, Gerdts G, Hahnke S, Han C, Jahn D, Kalhoefer D, Kiss H, Klenk HP, Kyrpides N, Liebl W, Liesegang H, Meincke L, Pati A, Petersen J, Piekarski T, Pommerenke C, Pradella S, Pukall R, Rabus R, Stackebrandt E, Thole S, Thompson L, Tielen P, Tomasch J, von Jan M, Wanphrut N, Wichels A, Zech H, Simon M (2010) The complete genome sequence of the algal symbiont Dinoroseobacter shibae—a hitchhiker's guide to life in the sea. ISME J 4:61–77CrossRefGoogle Scholar
  72. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, Hooper SD, Pati A, Lykidis A, Spring S, Anderson IJ, D'haeseleer P, Zemla A, Singer M, Lapidus A, Nolan M, Copeland A, Han C, Chen F, Cheng JF, Lucas S, Kerfeld C, Lang E, Gronow S, Chain P, Bruce D, Rubin EM, Kyrpides NC, Klenk HP, Eisen JA (2009) A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462:1056–1060CrossRefGoogle Scholar
  73. Yoder-Himes DR, Chain PSG, Zhu Y, Wurtzel O, Rubin EM, Tiedje JM, Sorek R (2009) Mapping the Burkholderia cenocepacia niche response via high-throughput sequencing. Proc Natl Acad Sci U S A 106:3976–3981CrossRefGoogle Scholar
  74. Zhang R, Lin Y (2009) DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes. Nucleic Acids Res 37:D455–458CrossRefGoogle Scholar
  75. Zielenkiewicz U, Ceglowski P (2001) Mechanisms of plasmid stable maintenance with special focus on plasmid addiction systems. Acta Biochim Pol 48:1003–1023Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jörn Petersen
    • 1
    Email author
  • Oliver Frank
    • 1
  • Markus Göker
    • 1
  • Silke Pradella
    • 1
  1. 1.Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbHBraunschweigGermany

Personalised recommendations