Skip to main content

Advertisement

Log in

Cell aggregations in yeasts and their applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Yeasts can display four types of cellular aggregation: sexual, flocculation, biofilm formation, and filamentous growth. These cell aggregations arise, in some yeast strains, as a response to environmental or physiological changes. Sexual aggregation is part of the yeast mating process, representing the first step of meiotic recombination. The flocculation phenomenon is a calcium-dependent asexual reversible cellular aggregation that allows the yeast to withstand adverse conditions. Biofilm formation consists of multicellular aggregates that adhere to solid surfaces and are embedded in a protein matrix; this gives the yeast strain either the ability to colonize new environments or to survive harsh environmental conditions. Finally, the filamentous growth is the ability of some yeast strains to grow in filament forms. Filamentous growth can be attained by two different means, with the formation of either hyphae or pseudohyphae. Both hyphae and pseudohyphae arise when the yeast strain is under nutrient starvation conditions and they represent a means for the microbial strain to spread over a wide area to survey for food sources, without increasing its biomass. Additionally, this filamentous growth is also responsible for the invasive growth of some yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexandre H, Blanchet S, Charpentier C (2000) Identification of a 49-kDa hydrophobic cell wall mannoprotein present in velum yeast which may be implicated in velum formation. FEMS Microbiol Lett 185:147–150

    CAS  Google Scholar 

  • Al-Fattani MA, Douglas LJ (2006) Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J Med Microbiol 55:999–1008

    CAS  Google Scholar 

  • Al-Mahmood S, Colin S, Bonaly R (1991) Kluyveromyces bulgaricus yeast lectins. Isolation of two galactose-specific lectin forms from the yeast cell wall. J Biol Chem 266:20882–20887

    CAS  Google Scholar 

  • Bankar A, Winey M, Prakash D, Kumar AR, Gosavi S, Kapadnis B, Zinjarde S (2012) Bioleaching of fly ash by the tropical marine yeast, Yarrowia lipolytica NCIM 3589. Appl Biochem Biotechnol 168:2205–2217

    CAS  Google Scholar 

  • Barnett JA, Payne RW, Yarrow D (eds) (2000) Yeasts: characteristics and identification, 3rd edn. Cambridge University Press, Cambridge, 1150 pp

    Google Scholar 

  • Barrales RR, Jiménez J, Ibeas JI (2008) Identification of novel activation mechanisms for FLO11 regulation in Saccharomyces cerevisiae. Genetics 178:145–156

    CAS  Google Scholar 

  • Becker DM, Lundblad V (2001) Introduction of DNA into yeast cells. Curr Protoc Mol Biol Chapter 13: Unit13.7

  • Berlanga TM, Atanasio C, Mauricio JC, Ortega JM (2001) Influence of aeration on the physiological activity of Flor yeasts. J Agric Food Chem 49:3378–3384

    CAS  Google Scholar 

  • Betz R, MacKay VL, Duntze W (1977) a-Factor from Saccharomyces cerevisiae: partial characterization of a mating hormone produced by cells of mating type a. J Bacteriol 132:462–472

    CAS  Google Scholar 

  • Bojsen RK, Andersen KS, Regenberg B (2012) Saccharomyces cerevisiae—a model to uncover molecular mechanisms for yeast biofilm biology. FEMS Immunol Med Microbiol 65:169–182

    CAS  Google Scholar 

  • Bony M, Thines-Sempoux D, Barre P, Blondin B (1997) Localization and cell surface anchoring of the Saccharomyces cerevisiae flocculation protein Flo1p. J Bacteriol 179:4929–4936

    CAS  Google Scholar 

  • Brückner S, Mösch H (2012) Choosing the right lifestyle: adhesion and development in Saccharomyces cerevisiae. FEMS Microbiol Rev 36:25–58

    Google Scholar 

  • Burke D, Mendonca-Previato L, Ballou CE (1980) Cell–cell recognition in yeast: purification of Hansenula wingei 21-cell sexual agglutination factor and comparison of the factors from three genera. Proc Natl Acad Sci U S A 77:318–322

    CAS  Google Scholar 

  • Cappellaro C, Baldermann C, Rachel R, Tanner W (1994) Mating type-specific cell–cell recognition of Saccharomyces cerevisiae: cell wall attachment and active sites of a- and α-agglutinin. EMBO J 13:4737–4744

    CAS  Google Scholar 

  • Ceccato-Antonini SR (2008) Biotechnological implications of filamentation in Saccharomyces cerevisiae. Biotechnol Lett 30:1151–1161

    CAS  Google Scholar 

  • Chen H, Fink GR (2006) Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev 20:1150–1161

    CAS  Google Scholar 

  • Cook AH (1958) The chemistry and biology of yeasts. Academic, New York, 763 pp

    Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    CAS  Google Scholar 

  • Cox HHJ, Moermna RE, van Baalen S, van Heiningen WNM, Doddema HJ, Harder W (1997) Performance of a styrene-degrading biofilter containing the yeast Exophiala jeanselmei. Biotechnol Bioeng 53:259–266

    CAS  Google Scholar 

  • Crandall M, Egel R, MacKay VL (1977) Physiology of mating in three yeasts. Adv Microb Physiol 15:307–398

    CAS  Google Scholar 

  • Cruess WV, Hohl L (1938) Certain film-forming yeasts. J Bacteriol 36:318

    CAS  Google Scholar 

  • Cullen PJ, Sprague GF Jr (2012) The regulation of filamentous growth in yeast. Genetics 190:23–49

    CAS  Google Scholar 

  • Cunha AF, Missawa SK, Gomes LH, Reis SF, Pereira GAG (2006) Control by sugar of Saccharomyces cerevisiae flocculation for industrial ethanol production. FEMS Yeast Res 6:280–287

    CAS  Google Scholar 

  • Damas-Buenrostro LC, Gracia-González G, Hernández-Luna CE, Galan-Wong LJ, Pereyra-Alférez B, Sierra-Benavides JA (2008) Detection of FLO genes in lager and wild yeast strains. J Am Soc Brew Chem 66:184–187

    CAS  Google Scholar 

  • Dengis PB, Nelissen LR, Rouxhet PG (1995) Mechanisms of yeast flocculation: comparison of top- and bottom-fermenting strains. Appl Environ Microbiol 61:718–728

    CAS  Google Scholar 

  • De Prijck K, De Smet N, Coenye T, Schacht E, Nelis HJ (2010) Prevention of Candida albicans biofilm formation by covalently bound dimethylaminoethylmethacrylate and polyethylenimine. Mycopathologia 170:213–221

    CAS  Google Scholar 

  • DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686

    CAS  Google Scholar 

  • Di Bonaventura G, Pompilio A, Picciani C, Iezzi M, D'Antonio D, Piccolomini R (2006) Biofilm formation by the emerging fungal pathogen Trichosporon asahii: development, architecture, and antifungal resistance. Antimicrob Agents Chemother 50:3269–3276

    Google Scholar 

  • Dickinson JR (1996) ‘Fusel’ alcohols induce hyphal-like extensions and pseudohyphal formation in yeasts. Microbiology (Reading, U K) 142:1391–1397

    CAS  Google Scholar 

  • Dickinson JR (2008) Filament formation in Saccharomyces cerevisiae: a review. Folia Microbiol (Praha) 53:3–14

    CAS  Google Scholar 

  • Doi S, Suzuki Y, Yoshimura M (1979) Induction of sexual cell agglutinability of A mating type cells by α-factor in Saccharomyces cerevisiae. Biochem Biophys Res Commun 91:849–853

    CAS  Google Scholar 

  • Domingues L, Lima N, Teixeira JA (2000a) Contamination of a high-cell-density continuous bioreactor. Biotechnol Bioeng 68:584–587

    CAS  Google Scholar 

  • Domingues L, Vicente AA, Lima N, Teixeira JA (2000b) Applications of yeast flocculation in biotechnological processes. Biotechnol Bioprocess Eng 5:288–305

    CAS  Google Scholar 

  • Domingues L, Lima N, Teixeira JA (2001) Alcohol production from cheese whey permeate using genetically modified flocculent yeast cells. Biotechnol Bioeng 72:507–514

    CAS  Google Scholar 

  • Douglas LJ (2003) Candida biofilms and their role in infection. Trends Microbiol 11:30–36

    CAS  Google Scholar 

  • Dowell RD, Ryan O, Jansen A, Cheung D, Agarwala S, Danford T, Bernstein DA, Rolfe PA, Heisler LE, Chin B, Nislow C, Giaever G, Phillips PC, Fink GR, Gifford DK, Boone C (2010) Genotype to phenotype: a complex problem. Science 328:469

    CAS  Google Scholar 

  • Dranginis AM, Rauceo JM, Coronado JE, Lipke PN (2007) A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. Microbiol Mol Biol Rev 71:282–294

    CAS  Google Scholar 

  • Dusane DH, Nancharaiah YV, Venugopalan VP, Kumar AR, Zinjarde SS (2008) Biofilm formation by a biotechnologically important tropical marine yeast isolate, Yarrowia lipolytica NCIM 3589. Water Sci Technol 58:2467–2475

    CAS  Google Scholar 

  • El-Behhari M, Ekome JN, Coulon J, Pucci B, Bonaly R (1998) Comparative extraction procedures for a galactose-specific lectin involved in flocculation of Kluyveromyces lactis strains. Appl Microbiol Biotechnol 49:16–23

    CAS  Google Scholar 

  • Farias ME, Manca de Nadra MC (2003) Flocculation and cell surface characterization of Kloeckera apiculata from wine. J Appl Microbiol 95:457–462

    CAS  Google Scholar 

  • Fehrenbacher G, Perry K, Thorner J (1978) Cell–cell recognition in Saccharomyces cerevisiae: regulation of mating-specific adhesion. J Bacteriol 134:893–901

    CAS  Google Scholar 

  • Fichtner L, Schulze F, Braus GH (2007) Differential Flo8p-dependent regulation of FLO1 and FLO11 for cell–cell and cell–substrate adherence of S. cerevisiae S288c. Mol Microbiol 66:1276–1289

    CAS  Google Scholar 

  • Figueredo LA, Cafarchia C, Desantis S, Otranto D (2012) Biofilm formation of Malassezia pachydermatis from dogs. Vet Microbiol 160:126–131

    CAS  Google Scholar 

  • Fiori S, Scherm B, Migheli Q, Farrel R, Budroni M, Wisniewski M (2011) Differential gene expression during the pathogenic interaction between Pichia fermentans and peach fruit. Acta Hortic 905:103–105

    CAS  Google Scholar 

  • Flemming H, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    CAS  Google Scholar 

  • Forsburg SL (2005) The yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe: models for cell biology research. Gravit Space Biol Bull 18:3–9

    Google Scholar 

  • Fu Y, Ibrahim AS, Sheppard DC, Chen Y, French SW, Cutler JE, Filler SG, Edwards JE Jr (2002) Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway. Mol Microbiol 44:61–72

    CAS  Google Scholar 

  • Fujita Y, Takahashi S, Ueda M, Tanaka A, Okada H, Morikawa Y, Kawaguchi T, Arai M, Fukuda H, Kondo A (2002) Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol 68:5136–5141

    CAS  Google Scholar 

  • Fujita A, Hiroko T, Hiroko F, Oka C (2005) Enhancement of superficial pseudohyphal growth by overexpression of the SFG1 gene in yeast Saccharomyces cerevisiae. Gene 363:97–104

    CAS  Google Scholar 

  • Gancedo JM (2001) Control of pseudohyphae formation in Saccharomyces cerevisiae. FEMS Microbiol Rev 25:107–123

    CAS  Google Scholar 

  • Gattlen J, Zinn M, Guimond S, Koerner E, Amberg C, Mauclaire L (2011) Biofilm formation by the yeast Rhodotorula mucilaginosa: process, repeatability and cell attachment in a continuous biofilm reactor. Biofouling 27:979–991

    CAS  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C et al (1996) Life with 6000 genes. Science 274(546):563–567

    Google Scholar 

  • Gognies S, Barka EA, Gainvors-Claisse A, Belarbi A (2006) Interactions between yeasts and grapevines: filamentous growth, endopolygalacturonase and phytopathogenicity of colonizing yeasts. Microb Ecol 51:109–116

    Google Scholar 

  • Goossens K, Willaert R (2010) Flocculation protein structure and cell-cell adhesion mechanism in Saccharomyces cerevisiae. Biotechnol Lett 32:1571–1585

    CAS  Google Scholar 

  • Govender P, Domingo JL, Bester MC, Pretorius IS, Bauer FF (2008) Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae. Appl Environ Microbiol 74:6041–6052

    CAS  Google Scholar 

  • Govender P, Bester M, Bauer FF (2010) FLO gene-dependent phenotypes in industrial wine yeast strains. Appl Microbiol Biotechnol 86:931–945

    CAS  Google Scholar 

  • Govender P, Kroppenstedt S, Bauer FF (2011) Novel wine-mediated FLO11 flocculation phenotype of commercial Saccharomyces cerevisiae wine yeast strains with modified FLO gene expression. FEMS Microbiol Lett 317:117–126

    CAS  Google Scholar 

  • Green CB, Zhao X, Yeater KM, Hoyer LL (2005) Construction and real-time RT-PCR validation of Candida albicans PALS-GFP reporter strains and their use in flow cytometry analysis of ALS gene expression in budding and filamenting cells. Microbiology 151:1051–1060

    CAS  Google Scholar 

  • Grootjen DRJ, Vleesenbeek R, Windmeijer MGA, Van der Lans RGJM, Luyben KCAM (1991) A flocculating strain of Pichia stipitis for the conversion of glucose/xylose mixtures. Enzyme Microb Technol 13:734–739

    CAS  Google Scholar 

  • Guimaraes PMR, Teixeira JA, Domingues L (2008) Fermentation of high concentrations of lactose to ethanol by engineered flocculent Saccharomyces cerevisiae. Biotechnol Lett 30:1953–1958

    CAS  Google Scholar 

  • Guo B, Styles CA, Feng Q, Fink GR (2000) A Saccharomyces gene family involved in invasive growth, cell–cell adhesion, and mating. Proc Natl Acad Sci U S A 97:12158–12163

    CAS  Google Scholar 

  • Guthrie C, Fink GR (eds) (1991) Methods in enzymology, vol. 194: guide to yeast genetics and molecular biology. Academic, New York, 933 pp

    Google Scholar 

  • Haegeman B, Lobry C, Harmand J (2006) An effective model for flocculating bacteria with density-dependent growth dynamics. Am Inst Chem Eng J. arXiv preprint q-bio/0610042.

  • Hamal P, Ostransky J, Dendis M, Horvath R, Ruzicka F, Buchta V, Vejsova M, Sauer P, Hejnar P, Raclavsky V (2008) A case of endocarditis caused by the yeast Pichia fabianii with biofilm production and developed in vitro resistance to azoles in the course of antifungal treatment. Med Mycol 46:601–605

    Google Scholar 

  • Hansen EC (1881) Researches on the physiology and morphology of the alcohol ferment. Bied Centr 558–560

  • Hartmeier W, Borgmann R (1990) Glycerol formation with flocculent cells of Saccharomyces rouxii. DECHEMA Biotechnol Conf 4:833–836

    CAS  Google Scholar 

  • Hatti-Kaul R, Mattiasson B (2001) Downstream processing in biotechnology. In: Ratledge C, Kristiansen B (eds) Basic biotechnology. Cambridge University Press, Cambridge, pp 187–211

    Google Scholar 

  • Herker E, Jungwirth H, Lehmann KA, Maldener C, Froehlich K, Wissing S, Buettner S, Fehr M, Sigrist S, Madeo F (2004) Chronological aging leads to apoptosis in yeast. J Cell Biol 164:501–507

    CAS  Google Scholar 

  • Herman AI (1971) Mating responses in the yeast Hansenula holstii. Antonie Van Leeuwenhoek 37:275–280

    CAS  Google Scholar 

  • Hoyer LL, Fundyga R, Hecht JE, Kapteyn JC, Klis FM, Arnold J (2001) Characterization of agglutinin-like sequence genes from non-albicans Candida and phylogenetic analysis of the ALS family. Genetics 157:1555–1567

    CAS  Google Scholar 

  • Huang G, Dougherty SD, Erdman SE (2009) Conserved WCPL and CX4C domains mediate several mating adhesin interactions in Saccharomyces cerevisiae. Genetics 182:173–189

    CAS  Google Scholar 

  • Hussain T, Salhi O, Lematre J, Charpentier C, Bonaly R (1986) Comparative studies of flocculation and deflocculation of Saccharomyces uvarum and Kluyveromyces bulgaricus. Appl Microbiol Biotechnol 23:269–273

    CAS  Google Scholar 

  • Inaba C, Maekawa K, Morisaka H, Kuroda K, Ueda M (2009) Efficient synthesis of enantiomeric ethyl lactate by Candida antarctica lipase B (CALB)-displaying yeasts. Appl Microbiol Biotechnol 83:859–864

    CAS  Google Scholar 

  • Infante JJ, Dombek KM, Rebordinos L, Cantoral JM, Young ET (2003) Genome-wide amplifications caused by chromosomal rearrangements play a major role in the adaptive evolution of natural yeast. Genetics 165:1745–1759

    CAS  Google Scholar 

  • Jones ST, Korus RA, Admassu W, Heimsch RC (1984) Ethanol fermentation in a continuous tower fermentor. Biotechnol Bioeng 26:742–747

    CAS  Google Scholar 

  • Jue CK, Lipke PN (2002) Role of Fig2p in agglutination in Saccharomyces cerevisiae. Eukaryotic Cell 1:843–845

    CAS  Google Scholar 

  • Kang S, Choi H (2005) Effect of surface hydrophobicity on the adhesion of S. cerevisiae onto modified surfaces by poly(styrene-ran-sulfonic acid) random copolymers. Colloids Surf B 46:70–77

    CAS  Google Scholar 

  • Karunanithi S, Vadaie N, Chavel CA, Birkaya B, Joshi J, Grell L, Cullen PJ (2010) Shedding of the mucin-like flocculin Flo11p reveals a new aspect of fungal adhesion regulation. Curr Biol 20:1389–1395

    CAS  Google Scholar 

  • Katahira S, Fujita Y, Mizuike A, Fukuda H, Kondo A (2004) Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl Environ Microbiol 70:5407–5414

    CAS  Google Scholar 

  • Kato M, Maeda H, Kawakami M, Shiraga S, Ueda M (2005) Construction of a selective cleavage system for a protein displayed on the cell surface of yeast. Appl Microbiol Biotechnol 69:423–427

    CAS  Google Scholar 

  • Kaur R, Domergue R, Zupancic ML, Cormack BP (2005) A yeast by any other name: Candida glabrata and its interaction with the host. Curr Opin Microbiol 8:378–384

    CAS  Google Scholar 

  • Kawanabe Y, Yoshida K, Yanagishima N (1979) Sexual cell agglutination in relation to the formation of zygotes in Saccharomyces cerevisiae. Plant and Cell Physiology 20:423–433

    Google Scholar 

  • Kern K, Nunn CD, Pichova A, Dickinson JR (2004) Isoamyl alcohol-induced morphological change in Saccharomyces cerevisiae involves increases in mitochondria and cell wall chitin content. FEMS Yeast Res 5:43–49

    CAS  Google Scholar 

  • Kondo A, Shigechi H, Abe M, Uyama K, Matsumoto T, Takahashi S, Ueda M, Tanaka A, Kishimoto M, Fukuda H (2002) High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase. Appl Microbiol Biotechnol 58:291–296

    CAS  Google Scholar 

  • Kron SJ (1997) Filamentous growth in budding yeast. Trends Microbiol 5:450–454

    CAS  Google Scholar 

  • Kron SJ, Gow NA (1995) Budding yeast morphogenesis: signaling, cytoskeleton and cell cycle. Curr Opin Cell Biol 7:845–855

    CAS  Google Scholar 

  • Kumar CPG, Kumar SSJ, Menon T (2006) Phospholipase and proteinase activities of clinical isolates of Candida from immunocompromised patients. Mycopathologia 161:213–218

    CAS  Google Scholar 

  • Kuroda K, Ueda M (2006) Effective display of metallothionein tandem repeats on the bioadsorption of cadmium ion. Appl Microbiol Biotechnol 70:458–463

    CAS  Google Scholar 

  • Kurtzman CP, Fell JW (eds) (1997) The yeasts—a taxonomic study, 4th Revised and Enlarged edn. Elsevier, Amsterdam, 1100 pp

    Google Scholar 

  • Lambrechts MG, Bauer FF, Marmur J, Pretorius IS (1996a) Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. Proc Natl Acad Sci U S A 93:8419–8424

    CAS  Google Scholar 

  • Lambrechts MG, Sollitti P, Marmur J, Pretorius IS (1996b) A multicopy suppressor gene, MSS10, restores STA2 expression in Saccharomyces cerevisiae strains containing the STA10 repressor gene. Curr Genet 29:523–529

    CAS  Google Scholar 

  • Lee BN, Elion EA (1999) The MAPKKK Ste11 regulates vegetative growth through a kinase cascade of shared signaling components. Proc Natl Acad Sci U S A 96:12679–12684

    CAS  Google Scholar 

  • Li F, Palecek SP (2003) EAP1, a Candida albicans gene involved in binding human epithelial cells. Eukaryotic Cell 2:1266–1273

    CAS  Google Scholar 

  • Li Q, Zhao X, Chang AK, Zhang Q, Bai F (2012a) Ethanol-induced yeast flocculation directed by the promoter of TPS1 encoding trehalose-6-phosphate synthase 1 for efficient ethanol production. Metab Eng 14:1–8

    Google Scholar 

  • Li Y, Ma Y, Zhang L, Guo F, Ren L, Yang R, Li Y, Lou H (2012b) In vivo inhibitory effect on the biofilm formation of Candida albicans by liverwort derived riccardin D. PLoS One 7(4):e35543

    CAS  Google Scholar 

  • Lindquist W (1952) Cell-surface constituents and yeast flocculation. Nature 170:544–545

    CAS  Google Scholar 

  • Lipke PN, Kurjan J (1992) Sexual agglutination in budding yeasts: structure, function, and regulation of adhesion glycoproteins. Microbiol Rev 56:180–194

    CAS  Google Scholar 

  • Lu CF, Kurjan J, Lipke PN (1994) A pathway for cell wall anchorage of Saccharomyces cerevisiae alpha-agglutinin. Mol Cell Biol 14:4825–4833

    CAS  Google Scholar 

  • Machado MD, Santos MSF, Gouveia C, Soares HMVM, Soares EV (2008) Removal of heavy metals using a brewer's yeast strain of Saccharomyces cerevisiae: the flocculation as a separation process. Bioresour Technol 99:2107–2115

    CAS  Google Scholar 

  • Machado MD, Janssens S, Soares HMVM, Soares EV (2009) Removal of heavy metals using a brewer's yeast strain of Saccharomyces cerevisiae: advantages of using dead biomass. J Appl Microbiol 106:1792–1804

    CAS  Google Scholar 

  • Malm A, Chudzik B, Piersiak T, Gawron A (2010) Glass surface as potential in vitro substratum for Candida famata biofilm. Ann Agric Environ Med 17:115–118

    Google Scholar 

  • Martínez P, Codon AC, Pérez L, Benítez T (1995) Physiological and molecular characterization of Flor yeasts: polymorphism of Flor yeast populations. Yeast 11:1399–1411

    Google Scholar 

  • Martínez XC, Narbad A, Carter AT, Stratford M (1996) Flocculation of the yeast Candida famata (Debaryomyces hansenii): an essential role for peptone. Yeast 12:415–423

    Google Scholar 

  • Martínez P, Pérez Rodríguez L, Benítez T (1997) Factors which affect velum formation by Flor yeasts isolated from Sherry wine. Syst Appl Microbiol 20:154–157

    Google Scholar 

  • Matsuzawa T, Morita T, Tanaka N, Tohda H, Takegawa K (2011) Identification of a galactose-specific flocculin essential for non-sexual flocculation and filamentous growth in Schizosaccharomyces pombe. Mol Microbiol 82:1531–1544

    CAS  Google Scholar 

  • Mbawala A, Mahmood SA, Loppinet V, Bonaly R (1990) Acetolysis and proton NMR studies on mannans isolated from very flocculent and weakly flocculent cells of Pichia pastoris IFP 206. J Gen Microbiol 136:1279–1284

    CAS  Google Scholar 

  • McCusker JH, Clemons KV, Stevens DA, Davis RW (1994a) Genetic characterization of pathogenic Saccharomyces cerevisiae isolates. Genetics 136:1261–1269

    CAS  Google Scholar 

  • McCusker JH, Clemons KV, Stevens DA, Davis RW (1994b) Saccharomyces cerevisiae virulence phenotype as determined with CD-1 mice is associated with the ability to grow at 42 °C and form pseudohyphae. Infect Immun 62:5447–5455

    CAS  Google Scholar 

  • Mendonca-Previato L, Burke D, Ballou CE (1982) Sexual agglutination factors from the yeast Pichia amethionina. J Cell Biochem 19:171–178

    CAS  Google Scholar 

  • Miki BLA, Poon NH, James AP, Seligy VL (1982) Possible mechanism for flocculation interactions governed by gene FLO1 in Saccharomyces cerevisiae. J Bacteriol 150:878–889

    CAS  Google Scholar 

  • Mitra S, Thawrani D, Banerjee P, Gachhui R, Mukherjee J (2012) Induced biofilm cultivation enhances riboflavin production by an intertidally derived Candida famata. Appl Biochem Biotechnol 166:1991–2006

    CAS  Google Scholar 

  • Monteiro AS, Miranda TT, Lula I, Denadai ÂM, Sinisterra RD, Santoro MM, Santos VL (2011) Inhibition of Candida albicans CC biofilms formation in polystyrene plate surfaces by biosurfactant produced by Trichosporon montevideense CLOA72. Colloids Surf B Biointerfaces 84:467–476

    CAS  Google Scholar 

  • Murai T, Ueda M, Yamamura M, Atomi H, Shibasaki Y, Kamasawa N, Osumi M, Amachi T, Tanaka A (1997) Construction of a starch-utilizing yeast by cell surface engineering. Appl Environ Microbiol 63:1362–1366

    CAS  Google Scholar 

  • Murai T, Ueda M, Kawaguchi T, Arai M, Tanaka A (1998) Assimilation of cellooligosaccharides by a cell surface-engineered yeast expressing β-glucosidase and carboxymethylcellulase from Aspergillus aculeatus. Appl Environ Microbiol 64:4857–4861

    CAS  Google Scholar 

  • Murai T, Ueda M, Shibasaki Y, Kamasawa N, Osumi M, Imanaka T, Tanaka A (1999) Development of an arming yeast strain for efficient utilization of starch by co-display of sequential amylolytic enzymes on the cell surface. Appl Microbiol Biotechnol 51:65–70

    CAS  Google Scholar 

  • Murphy A, Kavanagh K (1999) Emergence of Saccharomyces cerevisiae as a human pathogen implications for biotechnology. Enzyme Microb Technol 25:551–557

    CAS  Google Scholar 

  • Nakamura Y, Shibasaki S, Ueda M, Tanaka A, Fukuda H, Kondo A (2001) Development of novel whole-cell immunoadsorbents by yeast surface display of the IgG-binding domain. Appl Microbiol Biotechnol 57:500–505

    CAS  Google Scholar 

  • Nam J, Fujita Y, Arai T, Kondo A, Morikawa Y, Okada H, Ueda M, Tanaka A (2002) Construction of engineered yeast with the ability of binding to cellulose. J Mol Catal B: Enzym 17:197–202

    CAS  Google Scholar 

  • NIH (1999) SBIR/STTR study and control of microbial biofilms. http://grants.nih.gov/grants/guide/pa-files/PA-99-084.html. Released April 21, 1999

  • Nishitani T, Shimada M, Kuroda K, Ueda M (2010) Molecular design of yeast cell surface for adsorption and recovery of molybdenum, one of rare metals. Appl Microbiol Biotechnol 86:641–648

    CAS  Google Scholar 

  • Nonklang S, Abdel-Banat BMA, Cha-aim K, Moonjai N, Hoshida H, Limtong S, Yamada M, Akada R (2008) High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Appl Environ Microbiol 74:7514–7521

    CAS  Google Scholar 

  • Oh S, Cheng G, Nuessen JA, Jajko R, Yeater KM, Zhao X, Pujol C, Soll DR, Hoyer LL (2005) Functional specificity of Candida albicans Als3p proteins and clade specificity of ALS3 alleles discriminated by the number of copies of the tandem repeat sequence in the central domain. Microbiology 151:673–681

    CAS  Google Scholar 

  • O'Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79

    Google Scholar 

  • Panteloglou AG, Smart KA, Cook DJ (2012) Malt-induced premature yeast flocculation: current perspectives. J Ind Microbiol Biotechnol 39:813–822

    CAS  Google Scholar 

  • Pierce M, Ballou CE (1983) Cell-cell recognition in yeast. Characterization of the sexual agglutination factors from Saccharomyces kluyveri. J Biol Chem 258:3576–3582

    CAS  Google Scholar 

  • Pitangui NS, Sardi JCO, Silva JF, Benaducci T, Moraes da Silva RA, Rodríguez-Arellanes G, Taylor ML, Mendes-Giannini MJS, Fusco-Almeida AM (2012) Adhesion of Histoplasma capsulatum to pneumocytes and biofilm formation on an abiotic surface. Biofouling 28:711–718

    CAS  Google Scholar 

  • Pretorius IS (2000) Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16:675–729

    CAS  Google Scholar 

  • Prince IG, Barford JP (1982) Tower fermentation of sugar cane juice. Biotechnol Lett 4:469–474

    CAS  Google Scholar 

  • Purevdorj-Gage B, Orr ME, Stoodley P, Sheehan KB, Hyman LE (2007) The role of FLO11 in Saccharomyces cerevisiae biofilm development in a laboratory based flow-cell system. FEMS Yeast Res 7:372–379

    CAS  Google Scholar 

  • Purwadi R, Brandberg T, Taherzadeh MJ (2007) A possible industrial solution to ferment lignocellulosic hydrolyzate to ethanol: continuous cultivation with flocculating yeast. Int J Mol Sci 8:920–932

    CAS  Google Scholar 

  • Ramage G, Vande WK, Wickes BL, López-Ribot JL (2001) Biofilm formation by Candida dubliniensis. J Clin Microbiol 39:3234–3240

    CAS  Google Scholar 

  • Rando OJ, Verstrepen KJ (2007) Timescales of genetic and epigenetic inheritance. Cell 128:655–668

    CAS  Google Scholar 

  • Reynolds TB, Fink GR (2001) Bakers' yeast, a model for fungal biofilm formation. Science 291:878–881

    CAS  Google Scholar 

  • Reynolds TB, Jansen A, Peng X, Fink GR (2008) Mat formation in Saccharomyces cerevisiae requires nutrient and pH gradients. Eukaryotic Cell 7:122–130

    CAS  Google Scholar 

  • Robertson EJ, Wolf JM, Casadevall A (2012) EDTA inhibits biofilm formation, extracellular vesicular secretion, and shedding of the capsular polysaccharide glucuronoxylomannan by Cryptococcus neoformans. Appl Environ Microbiol 78:7977–7984

    CAS  Google Scholar 

  • Romeo O, De LF, Criseo G (2011) Adherence ability of Candida africana: a comparative study with Candida albicans and Candida dubliniensis. Mycoses 54:e57–61

    Google Scholar 

  • Roy A, Lu CF, Marykwas DL, Lipke PN, Kurjan J (1991) The AGA1 product is involved in cell surface attachment of the Saccharomyces cerevisiae cell adhesion glycoprotein a-agglutinin. Mol Cell Biol 11:4196–4206

    CAS  Google Scholar 

  • Rua D, Tobe BT, Kron SJ (2001) Cell cycle control of yeast filamentous growth. Curr Opin Microbiol 4:720–727

    CAS  Google Scholar 

  • Rupp S, Summers E, Lo H, Madhani H, Fink G (1999) MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J 18:1257–1269

    CAS  Google Scholar 

  • Ruzicka F, Hola V, Votava M, Tejkalova R (2007) Importance of biofilm in Candida parapsilosis and evaluation of its susceptibility to antifungal agents by colorimetric method. Folia Microbiol (Praha) 52:209–214

    CAS  Google Scholar 

  • Saito K, Sato S, Shimoi H, Iefuji H, Tadenuma M (1990) Flocculation mechanism of Hansenula anomala J224. Agric Biol Chem 54:1425–1432

    CAS  Google Scholar 

  • Scherr GH, Weaver RH (1953) The dimorphism phenomenon in yeasts. Bacteriol Rev 17:51–92

    CAS  Google Scholar 

  • Schreuder MP, Deen C, Boersma WJA, Pouwels PH, Klis FM (1996) Yeast expressing hepatitis B virus surface antigen determinants on its surface: implications for a possible oral vaccine. Vaccine 14:383–388

    CAS  Google Scholar 

  • Seong KT, Katakura Y, Ninomiya K, Bito Y, Katahira S, Kondo A, Ueda M, Shioya S (2006) Effect of flocculation on performance of arming yeast in direct ethanol fermentation. Appl Microbiol Biotechnol 73:60–66

    CAS  Google Scholar 

  • Shen Z, Wang L, Pike J, Jue CK, Zhao H, De Nobel H, Kurjan J, Lipke PN (2001) Delineation of functional regions within the subunits of the Saccharomyces cerevisiae cell adhesion molecule a-agglutinin. J Biol Chem 276:15768–15775

    CAS  Google Scholar 

  • Shepherd MG (1988) Morphogenetic transformation of fungi. Curr Top Med Mycol 2:278–304

    CAS  Google Scholar 

  • Shigechi H, Koh J, Fujita Y, Matsumoto T, Bito Y, Ueda M, Satoh E, Fukuda H, Kondo A (2004) Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and α-amylase. Appl Environ Microbiol 70:5037–5040

    CAS  Google Scholar 

  • Shimoi H, Sakamoto K, Okuda M, Atthi R, Iwashita K, Ito K (2002) The AWA1 gene is required for the foam-forming phenotype and cell surface hydrophobicity of sake yeast. Appl Environ Microbiol 68:2018–2025

    CAS  Google Scholar 

  • Sipiczki M (2012) Pichia bruneiensis sp. nov., a novel biofilm producing dimorphic yeast species isolated from flowers in Borneo. Int J Syst Evol Microbiol 62:3099–3104

    Google Scholar 

  • Smukalla S, Caldara M, Pochet N, Beauvais A, Guadagnini S, Yan C, Vinces MD, Jansen A, Prevost MC, Latge J, Fink GR, Foster KR, Verstrepen KJ (2008) FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell 135:726–737

    CAS  Google Scholar 

  • Soares EV (2011) Flocculation in Saccharomyces cerevisiae: a review. J Appl Microbiol 110:1–18

    CAS  Google Scholar 

  • Soares EV, De Coninck G, Duarte F, Soares HMVM (2002) Use of Saccharomyces cerevisiae for Cu2+ removal from solution: the advantages of using a flocculent strain. Biotechnol Lett 24:663–666

    CAS  Google Scholar 

  • Spencer JFT, Miller R, Spencer DM, Wilkie D (1981) Flocculation and starch utilization in some antibiotic-resistant mitochondrial mutants of Saccharomyces diastaticus. Curr Dev Yeast Res, [Proc Int Yeast Symp] 5:33–39

    Google Scholar 

  • Staab JF, Bradway SD, Fidel PL, Sundstrom P (1999) Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283:1535–1538

    CAS  Google Scholar 

  • Stratford M (1989) Evidence for two mechanisms of flocculation in Saccharomyces cerevisiae. Yeast 5:S441–S445

    CAS  Google Scholar 

  • Stratford M, Pearson BM (1992) Lectin-mediated flocculation of the yeast Saccharomycodes ludwigii NCYC 734. Lett Appl Microbiol 14:214–216

    Google Scholar 

  • Suzuki K (2003) Roles of sexual cell agglutination in yeast mass mating. Genes Genet Syst 78:211–219

    CAS  Google Scholar 

  • Suzuki T, Imanishi Y, Iwaguchi S, Kamihara T (1998) Depolarized cell growth precedes filamentation during the process of ethanol-induced pseudohyphal formation in the yeast Candida tropicalis. Microbiology 144:403–410

    CAS  Google Scholar 

  • Suzzi G, Romano P (1990) Flocculation in Zygosaccharomyces. Ind Bevande 19:306–308

    CAS  Google Scholar 

  • Teixeira JA, Mota M, Goma G (1990) Continuous ethanol production by a flocculating strain of Kluyveromyces marxianus: bioreactor performance. Bioprocess Eng 5:123–127

    CAS  Google Scholar 

  • Teixeira JA, Oliveira R, Azeredo J, Sousa M, Sil C (1995) Cell wall surface properties and flocculence of a Kluyveromyces marxianus strain. Colloids Surf, B 5:197–203

    CAS  Google Scholar 

  • ten Cate JM, Klis FM, Pereira-Cenci T, Crielaard W, de Groot PWJ (2009) Molecular and cellular mechanisms that lead to Candida biofilm formation. J Dent Res 88:105–115

    Google Scholar 

  • Terrance K, Lipke PN (1981) Sexual agglutination in Saccharomyces cerevisiae. J Bacteriol 148:889–896

    CAS  Google Scholar 

  • Terrance K, Lipke PN (1987) Pheromone induction of agglutination in Saccharomyces cerevisiae A cells. J Bacteriol 169:4811–4815

    CAS  Google Scholar 

  • Theraud M, Bedouin Y, Guiguen C, Gangneux J (2004) Efficacy of antiseptics and disinfectants on clinical and environmental yeast isolates in planktonic and biofilm conditions. J Med Microbiol 53:1013–1018

    CAS  Google Scholar 

  • Vallejo JA, Serrat M, Pérez-Portuondo I, Sánchez-Pérez A, Ageitos JM, Villa TG (2012) A novel Kluyveromyces marxianus strain with an inducible flocculation phenotype. AMB Express 2:38

    Google Scholar 

  • Van de Velde S, Thevelein JM (2008) Cyclic AMP-protein kinase A and Snf1 signaling mechanisms underlie the superior potency of sucrose for induction of filamentation in Saccharomyces cerevisiae. Eukaryotic Cell 7:286–293

    Google Scholar 

  • Van Mulders SE, Christianen E, Saerens SMG, Daenen L, Verbelen PJ, Willaert R, Verstrepen KJ, Delvaux FR (2009) Phenotypic diversity of Flo protein family-mediated adhesion in Saccharomyces cerevisiae. FEMS Yeast Res 9:178–190

    Google Scholar 

  • Van Mulders SE, Ghequire M, Daenen L, Verbelen PJ, Verstrepen KJ, Delvaux FR (2010) Flocculation gene variability in industrial brewer's yeast strains. Appl Microbiol Biotechnol 88:1321–1331

    Google Scholar 

  • Veelders M, Bruckner S, Ott D, Unverzagt C, Mosch H, Essen L (2010) Structural basis of flocculin-mediated social behavior in yeast. Proc Natl Acad Sci U S A 107:22511–22516

    CAS  Google Scholar 

  • Verstrepen KJ, Klis FM (2006) Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60:5–15

    CAS  Google Scholar 

  • Verstrepen KJ, Derdelinckx G, Verachtert H, Delvaux FR (2003) Yeast flocculation: what brewers should know. Appl Microbiol Biotechnol 61:197–205

    CAS  Google Scholar 

  • Verstrepen KJ, Reynolds TB, Fink GR (2004) Origins of variation in the fungal cell surface. Nat Rev Microbiol 2:533–540

    CAS  Google Scholar 

  • Verstrepen KJ, Jansen A, Lewitter F, Fink GR (2005) Intragenic tandem repeats generate functional variability. Nat Genet 37:986–990

    CAS  Google Scholar 

  • Vidgren V, Londesborough J (2011) 125th anniversary review: yeast flocculation and sedimentation in brewing. J Inst Brew 117:475–487

    CAS  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250

    CAS  Google Scholar 

  • Wadle A, Mischo A, Strahl S, Nishikawa H, Held G, Neumann F, Wullner B, Fischer E, Kleber S, Karbach J, Jager E, Shiku H, Odunsi K, Shrikant PA, Knuth A, Cerundolo V, Renner C (2010) NY-ESO-1 protein glycosylated by yeast induces enhanced immune responses. Yeast 27:919–931

    CAS  Google Scholar 

  • Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451

    CAS  Google Scholar 

  • Wang F, Shen W, Rao Z, Fang H, Zhan X, Zhuge J (2008) Construction of a flocculating yeast for fuel ethanol production. Biotechnol Lett 30:97–102

    Google Scholar 

  • Wasilenko JL, Sarmento L, Spatz S, Pantin-Jackwood M (2010) Cell surface display of highly pathogenic avian influenza virus hemagglutinin on the surface of Pichia pastoris cells using alpha-agglutinin for production of oral vaccines. Biotechnol Prog 26:542–547

    CAS  Google Scholar 

  • Wen F, Sun J, Zhao H (2010) Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Environ Microbiol 76:1251–1260

    CAS  Google Scholar 

  • Wojciechowicz D, Lu CF, Kurjan J, Lipke PN (1993) Cell surface anchorage and ligand-binding domains of the Saccharomyces cerevisiae cell adhesion protein α-agglutinin, a member of the immunoglobulin superfamily. Mol Cell Biol 13:2554–2563

    CAS  Google Scholar 

  • Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Novel strategy for yeast construction using delta-integration and cell fusion to efficiently produce ethanol from raw starch. Appl Microbiol Biotechnol 85:1491–1498

    CAS  Google Scholar 

  • Yamaguchi M, Yoshida K, Banno I, Yanagishima N (1984) Mating-type differentiation in ascosporogenous yeasts on the basis of mating-type-specific substances responsible for sexual cell-cell recognition. MGG, Mol Gen Genet 194:24–30

    Google Scholar 

  • Zara S, Gross MK, Zara G, Budroni M, Bakalinsky AT (2010) Ethanol-independent biofilm formation by a Flor wine yeast strain of Saccharomyces cerevisiae. Appl Environ Microbiol 76:4089–4091

    CAS  Google Scholar 

  • Zara G, Goffrini P, Lodi T, Zara S, Mannazzu I, Budroni M (2012) FLO11 expression and lipid biosynthesis are required for air–liquid biofilm formation in a Saccharomyces cerevisiae Flor strain. FEMS Yeast Res 12:864–866

    CAS  Google Scholar 

  • Zhang W, Han S, Wei D, Lin Y, Wang X (2008) Functional display of Rhizomucor miehei lipase on surface of Saccharomyces cerevisiae with higher activity and its practical properties. J Chem Technol Biotechnol 83:329–335

    CAS  Google Scholar 

  • Zhang L, Chang W, Sun B, Groh M, Speicher A, Lou H (2011) Bisbibenzyls, a new type of antifungal agent, inhibit morphogenesis switch and biofilm formation through upregulation of DPP3 in Candida albicans. PLoS One 6(12):e28953

    CAS  Google Scholar 

  • Zhao XQ, Bai FW (2009) Yeast flocculation: new story in fuel ethanol production. Biotechnol Adv 27:849–856

    CAS  Google Scholar 

  • Zhao H, Shen Z, Kahn PC, Lipke PN (2001) Interaction of α-agglutinin and a-agglutinin, Saccharomyces cerevisiae sexual cell adhesion molecules. J Bacteriol 183:2874–2880

    CAS  Google Scholar 

  • Zhu W, Filler SG (2010) Interactions of Candida albicans with epithelial cells. Cell Microbiol 12:273–282

    CAS  Google Scholar 

  • Zhu Q, Wani G, Wani MA, Wani AA (2001) Human homologue of yeast rad23 protein a interacts with p300/cyclic AMP-responsive element binding (CREB)-binding protein to down-regulate transcriptional activity of p53. Cancer Res 61:64–70

    CAS  Google Scholar 

  • Zou W, Ueda M, Tanaka A (2001) Genetically controlled self-aggregation of cell-surface-engineered yeast responding to glucose concentration. Appl Environ Microbiol 67:2083–2087

    CAS  Google Scholar 

Download references

Acknowledgments

The authors want to express their gratitude to the Xunta de Galicia, The University of Santiago de Compostela through the Faculty of Pharmacy, and the School of Biotechnology for their support throughout.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Villa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vallejo, J.A., Sánchez-Pérez, A., Martínez, J.P. et al. Cell aggregations in yeasts and their applications. Appl Microbiol Biotechnol 97, 2305–2318 (2013). https://doi.org/10.1007/s00253-013-4735-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4735-y

Keywords

Navigation