Advertisement

Applied Microbiology and Biotechnology

, Volume 97, Issue 10, pp 4333–4342 | Cite as

Expression of a hepatitis A virus antigen in Lactococcus lactis and Escherichia coli and evaluation of its immunogenicity

  • Aleš BerlecEmail author
  • Tadej Malovrh
  • Petra Zadravec
  • Andrej Steyer
  • Matjaž Ravnikar
  • Jerica Sabotič
  • Mateja Poljšak-Prijatelj
  • Borut Štrukelj
Biotechnological products and process engineering

Abstract

An epidemic shift in Hepatitis A virus (HAV) infection has been observed in recent years in rapidly developing countries, with increasing numbers of severe adult cases which has led to renewed interest in vaccination. Our approach in vaccine development uses recombinant expression of the highly immunogenic HAV antigen VP1-P2a in food-grade lactic acid bacterium Lactococcus lactis and in Escherichia coli. We used genetic constructs that enable nisin-controlled expression of the antigen in L. lactis in three different forms: (a) intracellularly, (b) on the bacterial surface and (c) on the bacterial surface fused with the fragment of the E. coli flagellin molecule that can act as a molecular adjuvant. Expression of the two surface forms of the antigen was achieved in L. lactis, and the resulting antigen-displaying bacteria were administered orally to mice. Half the animals in each of the two groups developed specific IgGs, with titers increasing over time and reaching 1:422 without flagellin and 1:320 with flagellin. A much higher titer 1:25,803 was observed with the parenterally administered antigen, which was purified from E. coli. With the latter, a significant mucosal IgA response was also observed. Despite significant titers, the IgGs elicited with oral or parenteral administration could not prevent HAV from infecting cells in a virus neutralization assay, suggesting that the antibodies cannot recognize viral surface epitopes. Nevertheless, orally administered HAV antigen expressed in L. lactis elicited significant systemic humoral immune response showing the feasibility for development of effective HAV vaccine for mucosal delivery.

Keywords

Hepatitis A Vaccine Oral delivery Lactococcus lactis Immune response 

Notes

Acknowledgements

This study was supported by the Slovenian Research Agency Grant No. P4-0127. The authors are grateful to Prof. Roger Pain for critical reading of the manuscript.

Supplementary material

253_2013_4722_MOESM1_ESM.pdf (68 kb)
ESM 1 (PDF 68 kb)

References

  1. Andersen-Nissen E, Smith KD, Strobe KL, Barrett SL, Cookson BT, Logan SM, Aderem A (2005) Evasion of Toll-like receptor 5 by flagellated bacteria. Proc Natl Acad Sci USA 102(26):9247–9252CrossRefGoogle Scholar
  2. Bahey-El-Din M (2012) Lactococcus lactis-based vaccines from laboratory bench to human use: An overview. Vaccine 30(4):685–690CrossRefGoogle Scholar
  3. Bahey-El-Din M, Casey PG, Griffin BT, Gahan CG (2008) Lactococcus lactis-expressing listeriolysin O (LLO) provides protection and specific CD8(+) T cells against Listeria monocytogenes in the murine infection model. Vaccine 26(41):5304–5314CrossRefGoogle Scholar
  4. Berlec A, Jevnikar Z, Majhenic AC, Rogelj I, Strukelj B (2006) Expression of the sweet-tasting plant protein brazzein in Escherichia coli and Lactococcus lactis: a path toward sweet lactic acid bacteria. Appl Microbiol Biotechnol 73(1):158–165CrossRefGoogle Scholar
  5. Berlec A, Ravnikar M, Strukelj B (2012) Lactic acid bacteria as oral delivery systems for biomolecules. Die Pharmazie - An International Journal of Pharmaceutical Sciences 67(11):891Google Scholar
  6. Bermudez-Humaran LG, Langella P, Cortes-Perez NG, Gruss A, Tamez-Guerra RS, Oliveira SC, Saucedo-Cardenas O, Montes de Oca-Luna R, Le Loir Y (2003) Intranasal immunization with recombinant Lactococcus lactis secreting murine interleukin-12 enhances antigen-specific Th1 cytokine production. Infect Immun 71(4):1887–1896CrossRefGoogle Scholar
  7. Bermudez-Humaran LG, Cortes-Perez NG, Le Loir Y, Alcocer-Gonzalez JM, Tamez-Guerra RS, de Oca-Luna RM, Langella P (2004) An inducible surface presentation system improves cellular immunity against human papillomavirus type 16 E7 antigen in mice after nasal administration with recombinant lactococci. J Med Microbiol 53(Pt 5):427–433CrossRefGoogle Scholar
  8. Cauchard S, Bermudez-Humaran LG, Blugeon S, Laugier C, Langella P, Cauchard J (2011) Mucosal co-immunization of mice with recombinant lactococci secreting VapA antigen and leptin elicits a protective immune response against Rhodococcus equi infection. Vaccine 30(1):95–102CrossRefGoogle Scholar
  9. Cohen L, Benichou D, Martin A (2002) Analysis of deletion mutants indicates that the 2A polypeptide of hepatitis A virus participates in virion morphogenesis. J Virol 76(15):7495–7505CrossRefGoogle Scholar
  10. de Ruyter PG, Kuipers OP, de Vos WM (1996) Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol 62(10):3662–3667Google Scholar
  11. Douillard FP, O’Connell-Motherway M, Cambillau C, van Sinderen D (2011) Expanding the molecular toolbox for Lactococcus lactis: construction of an inducible thioredoxin gene fusion expression system. Microb Cell Fact 10:66CrossRefGoogle Scholar
  12. Drouault S, Corthier G, Ehrlich SD, Renault P (1999) Survival, physiology, and lysis of Lactococcus lactis in the digestive tract. Appl Environ Microbiol 65(11):4881–4886Google Scholar
  13. Emerson SU, Huang YK, Nguyen H, Brockington A, Govindarajan S, St Claire M, Shapiro M, Purcell RH (2002) Identification of VP1/2A and 2C as virulence genes of hepatitis A virus and demonstration of genetic instability of 2C. J Virol 76(17):8551–8559CrossRefGoogle Scholar
  14. Feinstone SM, Kapikian AZ, Purcell RH (1973) Hepatitis A: detection by immune electron microscopy of a viruslike antigen associated with acute illness. Science 182(4116):1026–1028CrossRefGoogle Scholar
  15. Gauss-Muller V, Zhou MQ, von der Helm K, Deinhardt F (1990) Recombinant proteins VP1 and VP3 of hepatitis A virus prime for neutralizing response. J Med Virol 31(4):277–283CrossRefGoogle Scholar
  16. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410(6832):1099–1103CrossRefGoogle Scholar
  17. Hendrickx G, Van Herck K, Vorsters A, Wiersma S, Shapiro C, Andrus JK, Ropero AM, Shouval D, Ward W, Van Damme P (2008) Has the time come to control hepatitis A globally? Matching prevention to the changing epidemiology. J Viral Hepat 15(Suppl 2):1–15CrossRefGoogle Scholar
  18. Holo H, Nes IF (1989) High-Frequency Transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol 55(12):3119–3123Google Scholar
  19. Hughes JV, Stanton LW (1985) Isolation and immunizations with hepatitis A viral structural proteins: induction of antiprotein, antiviral, and neutralizing responses. J Virol 55(2):395–401Google Scholar
  20. Innis BL, Snitbhan R, Kunasol P, Laorakpongse T, Poopatanakool W, Kozik CA, Suntayakorn S, Suknuntapong T, Safary A, Tang DB, Boslego JW (1994) Protection against hepatitis A by an inactivated vaccine. Jama 271(17):1328–1334CrossRefGoogle Scholar
  21. Khudyakov YE, Lopareva EN, Jue DL, Fang S, Spelbring J, Krawczynski K, Margolis HS, Fields HA (1999) Antigenic epitopes of the hepatitis A virus polyprotein. Virology 260(2):260–272CrossRefGoogle Scholar
  22. Le Loir Y, Azevedo V, Oliveira SC, Freitas DA, Miyoshi A, Bermudez-Humaran LG, Nouaille S, Ribeiro LA, Leclercq S, Gabriel JE, Guimaraes VD, Oliveira MN, Charlier C, Gautier M, Langella P (2005) Protein secretion in Lactococcus lactis: an efficient way to increase the overall heterologous protein production. Microb Cell Fact 4(1):2CrossRefGoogle Scholar
  23. Lei H, Sheng Z, Ding Q, Chen J, Wei X, Lam DM, Xu Y (2011) Evaluation of oral immunization with recombinant avian influenza virus HA1 displayed on the Lactococcus lactis surface and combined with the mucosal adjuvant cholera toxin subunit B. Clin Vaccine Immunol 18(7):1046–1051CrossRefGoogle Scholar
  24. Martin A, Lemon SM (2006) Hepatitis A virus: from discovery to vaccines. Hepatology 43(2 Suppl 1):S164–S172CrossRefGoogle Scholar
  25. Mierau I, Kleerebezem M (2005) Ten years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 68(6):705–717CrossRefGoogle Scholar
  26. Mitchell LA, Joseph A, Kedar E, Barenholz Y, Galun E (2006) Mucosal immunization against hepatitis A: antibody responses are enhanced by co-administration of synthetic oligodeoxynucleotides and a novel cationic lipid. Vaccine 24(25):5300–5310CrossRefGoogle Scholar
  27. Mizel SB, Bates JT (2010) Flagellin as an adjuvant: cellular mechanisms and potential. J Immunol 185(10):5677–5682CrossRefGoogle Scholar
  28. Moeini H, Rahim RA, Omar AR, Shafee N, Yusoff K (2011) Lactobacillus acidophilus as a live vehicle for oral immunization against chicken anemia virus. Appl Microbiol Biotechnol 90(1):77–88CrossRefGoogle Scholar
  29. Murthy KG, Deb A, Goonesekera S, Szabo C, Salzman AL (2004) Identification of conserved domains in Salmonella muenchen flagellin that are essential for its ability to activate TLR5 and to induce an inflammatory response in vitro. J Biol Chem 279(7):5667–5675CrossRefGoogle Scholar
  30. Ott JJ, Irving G, Wiersma ST (2012) Long-term protective effects of hepatitis A vaccines. A systematic review. Vaccine. doi: 10.1016/j.vaccine.2012.04.104
  31. Raha AR, Varma NR, Yusoff K, Ross E, Foo HL (2005) Cell surface display system for Lactococcus lactis: a novel development for oral vaccine. Appl Microbiol Biotechnol 68(1):75–81CrossRefGoogle Scholar
  32. Ravnikar M, Strukelj B, Obermajer N, Lunder M, Berlec A (2010) Engineered lactic acid bacterium Lactococcus lactis capable of binding antibodies and TNFalpha. Appl Environ Microbiol 76(20):6928–6932CrossRefGoogle Scholar
  33. Robertson BH, Brown VK, Holloway BP, Khanna B, Chan E (1989) Structure of the hepatitis A virion: identification of potential surface-exposed regions. Arch Virol 104(1–2):117–128CrossRefGoogle Scholar
  34. Rustgi VK, Schleupner CJ, Krause DS (1995) Comparative study of the immunogenicity and safety of Engerix-B administered at 0, 1, 2 and 12 months and Recombivax HB administered at 0, 1, and 6 months in healthy adults. Vaccine 13(17):1665–1668CrossRefGoogle Scholar
  35. Song L, Zhang Y, Yun NE, Poussard AL, Smith JN, Smith JK, Borisevich V, Linde JJ, Zacks MA, Li H, Kavita U, Reiserova L, Liu X, Dumuren K, Balasubramanian B, Weaver B, Parent J, Umlauf S, Liu G, Huleatt J, Tussey L, Paessler S (2009) Superior efficacy of a recombinant flagellin:H5N1 HA globular head vaccine is determined by the placement of the globular head within flagellin. Vaccine 27(42):5875–5884CrossRefGoogle Scholar
  36. Stapleton JT, Lange DK, LeDuc JW, Binn LN, Jansen RW, Lemon SM (1991) The role of secretory immunity in hepatitis A virus infection. J Infect Dis 163(1):7–11CrossRefGoogle Scholar
  37. Wells JM, Robinson K, Chamberlain LM, Schofield KM, Le Page RW (1996) Lactic acid bacteria as vaccine delivery vehicles. Antonie Van Leeuwenhoek 70(2–4):317–330CrossRefGoogle Scholar
  38. WHO (2012) WHO position paper on hepatitis A vaccines - June 2012. Weekly epidemiological record 28–29(87):261–276Google Scholar
  39. Yam KK, Pouliot P, N’Diaye MM, Fournier S, Olivier M, Cousineau B (2008) Innate inflammatory responses to the Gram-positive bacterium Lactococcus lactis. Vaccine 26(22):2689–2699CrossRefGoogle Scholar
  40. Zhang Q, Zhong J, Huan L (2010) Expression of hepatitis B virus surface antigen determinants in Lactococcus lactis for oral vaccination. Microbiol Res 166(2):111–120CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Aleš Berlec
    • 1
    Email author
  • Tadej Malovrh
    • 2
  • Petra Zadravec
    • 1
    • 3
  • Andrej Steyer
    • 4
  • Matjaž Ravnikar
    • 3
  • Jerica Sabotič
    • 1
  • Mateja Poljšak-Prijatelj
    • 4
  • Borut Štrukelj
    • 1
    • 3
  1. 1.Department of BiotechnologyJožef Stefan InstituteLjubljanaSlovenia
  2. 2.Institute of Microbiology and Parasitology, Veterinary FacultyUniversity of LjubljanaLjubljanaSlovenia
  3. 3.Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
  4. 4.Institute of Microbiology and Immunology, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations