Skip to main content
Log in

Pseudomonas: a promising biocatalyst for the bioconversion of terpenes

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The Pseudomonas genus is one of the most diverse and ecologically significant groups of known bacteria, and it includes species that have been isolated worldwide in all types of environments. The bacteria from this genus are characterized by an elevated metabolic versatility, which is due to the presence of a complex enzymatic system. Investigations since the early 1960s have demonstrated their potential as biocatalysts for the production of industrially relevant and value-added flavor compounds from terpenes. Although terpenes are often removed from essential oils as undesirable components, its synthetic oxy-functionalized derivatives have broad applications in flavors/fragrances and pharmaceutical industries. Hence, biotransformation appears to be an effective tool for the structural modification of terpene hydrocarbons and terpenoids to synthesize novel and high-valued compounds. This review highlights the potential of Pseudomonas spp. as biocatalysts for the bioconversion of terpenes and summarizes the presently known bioflavors that are obtained from these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abraham W-R, Arfmann H-A, Stumpf B, Washausen P, Kieslich K (1988) Microbial transformations of some terpenoids and natural compounds. In: Schreier P (ed) Bioflavour ’87. Analysis, biochemistry, biotechnology, edn. Walter de Gruyter and Co, Berlin, pp 399–414

    Google Scholar 

  • Abraham W-R, Arfmann H-A, Giersch W (1992) Microbial hydroxylation of precursors of sinensal. Z Naturforsch 47:851–858

    CAS  Google Scholar 

  • Agrawal R, Seetharam YN, Kelamani RC, Jyothishwaran G (2003) Biotransformation of ferulic acid to vanillin by locally isolated bacterial cultures. Indian J Biotechnol 2:610–612

    CAS  Google Scholar 

  • Aguilar JA, Zavala AN, Diaz-Perez C, Cervantes C, Diaz-Perez AL, Campos-Garcia J (2006) The atu and liu clusters are involved in the catabolic pathways for acyclic monoterpenes and leucine in Pseudomonas aeruginosa. Appl Environ Microbiol 72:2070–2079

    Article  CAS  Google Scholar 

  • Ashengroph M, Nahvi I, Zarkesh-Esfahani H (2008) A bioconversion process using a novel isolated strain of Pseudomonas sp. ISPC2 to produce natural vanillin from isoeugenol. Res Pharm Sci 3:41–47

    Google Scholar 

  • Ashengroph M, Nahvi I, Zarkesh-Esfahani H, Momenbeik F (2010) Optimization of media composition for improving conversion of isoeugenol into vanillin with Pseudomonas sp. strain KOB10 using the Taguchi method. Biocatal Biotransfor 28:339–347

    Article  CAS  Google Scholar 

  • Ashengroph M, Nahvi I, Zarkesh-Esfahani H, Momenbeik F (2011) Pseudomonas resinovorans SPR1, a newly isolated strain with potential of transforming eugenol to vanillin and further conversion to vanillic acid. New Biotechnol 28:656–664

    Article  CAS  Google Scholar 

  • Bauer K, Garbe D, Surburg H (2001) Common fragrance and flavor materials. Preparation, properties and uses. Wiley, Weinheim

    Book  Google Scholar 

  • Berger RG (2007) Flavours and fragrances: chemistry, bioprocessing and sustainability. Springer, Berlin

    Book  Google Scholar 

  • Best DJ, Floyd NC, Magalhaes A, Burfield A, Rhodes PM (1987) Initial enzymatic step in the degradation of α-pinene by Pseudomonas fluorescens NCIMB 11671. Biocatal 1:147–159

    Article  CAS  Google Scholar 

  • Bicas JL, Fontanille P, Pastore GM, Larroche C (2008) Characterization of monoterpene biotransformation in two pseudomonads. J Appl Microbiol 105:1991–2001

    Article  CAS  Google Scholar 

  • Bicas JB, Dionísio AP, Pastore GM (2009) Bio-oxidation of terpenes: an approach for the flavor industry. Chem Rev 109:4518–4531

    Article  CAS  Google Scholar 

  • Bicas JL, Silva JC, Dionísio AP, Pastore GM (2010a) Biotechnological production of bioflavors and functional sugars. Ciênc Tecnol Aliment 30:7–18

    Article  Google Scholar 

  • Bicas JL, Fontanille P, Pastore GM, Larroche C (2010b) A bioprocess for the production of high concentrations of R-(+)-α-terpineol from R-(+)-limonene. Proc Biochem 45:481–486

    Article  CAS  Google Scholar 

  • Boontawan A, Stuckey DC (2006) A membrane bioreactor for the biotransformation of α-pinene oxide to isonovalal by Pseudomonas fluorescens NCIMB 11671. Appl Microbiol Biotechnol 69:643–649

    Article  CAS  Google Scholar 

  • Borges KB, Borges WS, Pupo MT, Bonato PS (2007) Endophytic fungi as models for the stereoselective biotransformation of thioridazine. Appl Microbiol Biotechnol 77:669–674

    Article  CAS  Google Scholar 

  • Borges KB, Borges WS, Patrón-Durán R, Pupo MT, Bonato PS, Collado IG (2009) Stereoselective biotransformations using fungi as biocatalysts. Tetrahedron-Asymmetr 20:385–397

    Article  CAS  Google Scholar 

  • Brady D, Reddy S, Mboniswa B, Steenkamp LH, Rousseau A, Parkinson CJ, Chaplin J, Mitra RK, Moutlana T, Marais SF, Gardiner NS (2012) Biocatalytic enantiomeric resolution of l-menthol from an eight isomeric menthol mixture through transesterification. J Mol Catal B Enzyme 75:1–10

    Article  CAS  Google Scholar 

  • Bug TDH (2004) Chapter 4. Methods for studying enzymatic reactions. In: Introduction to enzyme and coenzyme chemistry, 2nd edn. Blackwell Publishing

  • Cadwallader KR, Braddock RJ (1992) Enzymatic hydration of (4R)-(+)-limonene to (4R)-(+)-alpha-terpineol. Dev Food Sci 29:571–584

    Google Scholar 

  • Cadwallader KR, Braddock RJ, Parish ME, Higgins DP (1989) Bioconversion of (+)-limonene by Pseudomonas gladioli. J Food Sci 54:1241–1245

    Article  CAS  Google Scholar 

  • Cantwell SG, Lau EP, Watt DS, Fall RR (1978) Biodegradation of acyclic isoprenoids by Pseudomonas species. J Bacteriol 135:324–333

    CAS  Google Scholar 

  • Chamberlain EM, Dagley S (1968) The metabolism of thymol by a Pseudomonas. Biochem J 110:755–763

    CAS  Google Scholar 

  • Chatterjee T, Bhattacharyya DK (2001) Biotransformation of limonene by Pseudomonas putida. Appl Microbiol Biotechnol 55:541–546

    Article  CAS  Google Scholar 

  • Cheetham PSJ, Gradley ML, Sime JT (2005) Flavor/aroma materials and their preparation. US patent 6844019

  • Chibata I, Tosa T, Sato T (1974) Process for the production of l-aspartic acid. JP Patent 3791926

  • Colaco D, Furtado I, Naik UP, Mavinkurve S, Paknikar SK (1993) Transformation of alpha-santonin via two independent pathways by Pseudomonas strain S ATCC 43388. Lett Appl Microbiol 17:212–214

    Article  CAS  Google Scholar 

  • Colocousi A, Saqib KM, Leak DJ (1996) Mutants of Pseudomonas fluorescens NCIMB 11671 defective in the catabolism of α-pinene. Appl Microbiol Biotechnol 45:822–830

    Article  CAS  Google Scholar 

  • de Carvalho CCCR, da Fonseca MMR (2006) Biotransformation of terpenes. Biotechnol Adv 24:134–142

    Article  CAS  Google Scholar 

  • Demyttenaere JCR (2001) Biotransformation of terpenoids by microorganisms. In: Rah Man A (ed) Studies in natural products chemistry, edn. Elsevier, London, pp 125–178

    Google Scholar 

  • Dhavalikar RS, Bhattacharyya PK (1966) Microbiological transformations of terpenes. Part VIII. Fermentation of limonene by a soil pseudomonad. Indian J Biochem 3:144–157

    CAS  Google Scholar 

  • Dhavalikar RS, Rangachari PN, Bhattacharyya PK (1966) Microbiological transformations of terpenes. Part IX. Pathways of degradation of limonene in a soil pseudomonad. Indian J Biochem 3:158–163

    CAS  Google Scholar 

  • Dhavalikar RS, Ehbrecht A, Albroscheit G (1974) Microbial transformations of terpenoides: β-pinene. Dragoco Rep 21:47–49

    Google Scholar 

  • Diaz-Perez AL, Zavala-Hernandez AN, Cervantes C, Campos-Garcia J (2004) The gnyRDBHAL cluster is involved in acyclic isoprenoid degradation in Pseudomonas aeruginosa. Appl Environ Microbiol 70:5102–5110

    Article  CAS  Google Scholar 

  • Divyashree MS, George J, Agrawal R (2006) Biotransformation of terpenic substrates by resting cells of Aspergillus niger and Pseudomonas putida isolates. J Food Sci Technol 43:73–76

    CAS  Google Scholar 

  • Dubal SA, Tilkari YP, Momin SA, Borkar IV (2008) Biotechnological routes in flavour industries. Advanced Biotech 6(9):20–31

    Google Scholar 

  • Dutta TK, Chakraborty J, Roy M, Ghosal D, Khara P, Gunsalus IC (2010) Cloning and characterization of a p-cymene monooxygenase from Pseudomonas chlororaphis subsp. aureofaciens. Res Microbiol 161:876–882

    Article  CAS  Google Scholar 

  • Eaton RW (1997) p-Cymene catabolic pathway in Pseudomonas putida F1: cloning and characterization of DNA encoding conversion of p-cymene to p-cumate. J Bacteriol 179:3171–3180

    CAS  Google Scholar 

  • Eccles R (2011) Menthol and related cooling compounds. J Pharm Pharmacol 46:618–630

    Article  Google Scholar 

  • Edris AE (2007) Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytother Res 21:308–323

    Article  CAS  Google Scholar 

  • Esmaeili A, Hashemi E (2011) Biotransformation of myrcene by Pseudomonas aeruginosa. Chem Cent J 5:26–32

    Article  CAS  Google Scholar 

  • Feron G, Bonnarme P, Durand A (1996) Prospects in the microbial production of food flavours. Trends Food Sci Technol 7:285–293

    Article  CAS  Google Scholar 

  • Fontanille P, Larroche C (2003) Optimization of isonovalal production from α-pinene oxide using permeabilized cells of Pseudomonas rhodesiae CIP 107491. Appl Microbiol Biotechnol 60:534–540

    CAS  Google Scholar 

  • Förster-Fromme K, Jendrossek D (2010a) AtuR is a repressor of acyclic terpene utilisation (Atu) gene cluster expression and specifically binds to two 13 bp inverted repeat sequences of the atuA-atuR intergenic region. FEMS Microbiol Lett 308:166–174

    Google Scholar 

  • Förster-Fromme K, Jendrossek D (2010b) Catabolism of citronellol and related acyclic terpenoids in pseudomonads. Appl Microbiol Biotechnol 87:859–869

    Article  CAS  Google Scholar 

  • Förster-Fromme K, Höschle B, Mack C, Bott M, Armbruster W, Jendrossek D (2006) Identification of genes and proteins necessary for catabolism of acyclic terpenes and leucine/ isovalerate in Pseudomonas aeruginosa. Appl Environ Microbiol 72:4819–4828

    Article  CAS  Google Scholar 

  • Förster-Fromme K, Chattopadhyay A, Jendrossek D (2008) Biochemical characterization of AtuD from Pseudomonas aeruginosa, the first member of a new subgroup of acyl-CoA dehydrogenases with specificity for citronellyl-CoA. Microbiology 154:789–796

    Article  CAS  Google Scholar 

  • Fraatz MA, Berger RG, Zorn H (2009) Nootkatone—a biotechnological challenge. Appl Microbiol Biotechnol 83:35–41

    Article  CAS  Google Scholar 

  • Franzetti L, Scarpellini M (2007) Characterization of Pseudomonas spp. isolated from foods. Ann Microbiol 57:39–47

    Article  CAS  Google Scholar 

  • Fujimoto Y, Shimizu T, Ishimoto T, Tatsuno T (1978) Studies on the microbiological transformation of alpha-santonin and its analogues. Yakugaku Zasshi 98:230–233

    CAS  Google Scholar 

  • Furukawa H, Morita H, Yoshida T, Nagasawa T (2003) Conversion of isoeugenol into vanillic acid by Pseudomonas putida I58 cells exhibiting high isoeugenol-degrading activity. J Biosci Bioeng 96:401–403

    CAS  Google Scholar 

  • Galeotti N, Mannellli LDC, Massanti G, Bartolini A, Ghelardini C (2002) Menthol: a natural analgesic compound. Neruosci Lett 322:145–148

    Article  CAS  Google Scholar 

  • Gasson MJ, Kitamura Y, McLauchlan WR, Narbad A, Parr AJ, Parsons ELH, Payne J, Rhodes MJC, Walton NJ (1998) Metabolism of ferulic acid to vanillin. A bacterial gene of the enoyl-SCoA hydratase/isomerase superfamily encodes an enzyme for the hydration and cleavage of a hydroxycinnamic acid SCoA thioester. J Bioi Chern 273:4163–4170

    Article  CAS  Google Scholar 

  • Geusz SD, Anderson DM (1992) Process of using bacteria that metabolize phenylacetate through mandelate. US Patent 5151353

  • Gibbon GH, Pirt SJ (1971) Degradation of α-pinene by Pseudomonas PX1. FEBS Lett 18:103–105

    Article  CAS  Google Scholar 

  • Gibbon GH, Millis NF, Pirt SJ (1972) Degradation of α-pinene by bacteria. Proc. IV IFS, Ferment Technol Today 609–612

  • Hagedorn S, Kaphammer B (1994) Microbial biocatalysis in the generation of flavour and fragrance chemicals. Annu Rev Microbiol 48:773–800

    Article  CAS  Google Scholar 

  • Hayashi T, Takashiba H, Ueda H, Tsutsumi C (1967) Nippon Nogeikagaku Kaishi, 41.254, 79878g

  • Hayashi T, Kakimoto T, Ueda H, Tatsumi C (1969) Microbiological conversion of terpenes. Part VI. Conversion of borneol. J Agric Chem Soc Jpn 43:583–587

    CAS  Google Scholar 

  • Hayashi T, Uedono S, Tatsumi C (1972) Conversion of α-terpineol to 8,9-epoxy-p-menthan-1-ol. Agric Biol Chem 36:690–691

    Article  CAS  Google Scholar 

  • Hoschle B, Jendroseek D (2005) Utilization of geraniol is dependent on molybdenum in Pseudomonas aeruginosa: evidence for different metabolic routes for oxidation of geraniol and citronellol. Microbiol 151:2277–2283

    Article  CAS  Google Scholar 

  • Hoschle B, Gnau V, Jendrossek D (2005) Methylcrotonyl-CoA and geranyl-CoA carboxylases are involved in leucine/isovalerate utilization (Liu) and acyclic terpene utilization (Atu), and are encoded by liuB/liuD and atuC/atuF, in Pseudomonas aeruginosa. Microbiol 151:3649–3656

    Article  CAS  Google Scholar 

  • Huang Z, Dostal L, Rosazza JPN (1993) Microbial transformations of ferulic acid by Saccharomyces cerevisiae and Pseudomonas fluorescens. Appl Environ Microbiol 59:2244–2250

    CAS  Google Scholar 

  • Hungund BL, Bhattacharyya PK, Rangachari PN (1970) Methylisopropyl ketone from a terpene fermentation by the soil pseudomonad, PL-strain. Indian J Biochem 7:80–81

    CAS  Google Scholar 

  • Iurescia S, Marconi AM, Tofani D, Gambacorta A, Paternò A, Devirgiliis C, Van der Werf MJ, Zennaro E (1999) Identification and sequencing of beta-myrcene catabolism genes from Pseudomonas sp. strain M1. Appl Environ Microbiol 65:2871–2876

    CAS  Google Scholar 

  • Joglekar SS, Dhavalikar RS (1969) Microbial transformation of terpenoids. I. Identification of metabolites produced by a pseudomonad from citronellal and citral. Appl Microbiol 18:1084–1087

    CAS  Google Scholar 

  • Kato N, Mori Y, Mine N, Fujii S, Watanabe N (1998) Method for producing l-aspartic acid. US Patent 5741681

  • Kiener A, Roduit J-P, Welling A (1998) Di and trisubstituted pyridines. US Patent 5760236

  • Kumar SR (2001) l-Glutaminase production by an immobilized marine Pseudomonas sp. BlMS · 51. Doctoral Thesis submitted to the Cochin University of Science and Technology, Kerala, India

  • Labuda IM, Goers SK, Keon KA (1992) Bioconversion process for the production of vanillin. US patent 5128253

  • Larroche C, Fontanille P (2006) Purification of α-pinene oxide lyase from Pseudomonas rhodesiae CIP 107491. In: Larroche C, Pandey A, Dussap CG (eds) Current topics on bioprocesses in food industry, edn. Asiatech, New Delhi, pp 98–108

    Google Scholar 

  • Leitereg TJ, Guadagni DG, Harris J, Mon TR, Teranishi R (1971) Chemical and sensory data supporting the difference between the odors of the enantiomeric carvones. J Agric Food Chem 19:785–787

    Article  CAS  Google Scholar 

  • Li H, Li X, Duan Y, Zhang K-Q, Yang J (2010) Biotransformation of nicotine by microorganism: the case of Pseudomonas spp. Appl Microbiol Biotechnol 86:11–17

    Article  CAS  Google Scholar 

  • Lietzan AD, Nagar M, Pellmann EA, Bourque JR, Bearne SL, St Maurice M (2012) Structure of mandelate racemase with bound intermediate analogues benzohydroxamate and cupferron. Biochem 51:1160–1170

    Article  CAS  Google Scholar 

  • Linares D, Martinez D, Fontanille P, Larroche C (2008) Production of trans-2-methyl-5-isopropylhexa-2,5-dienoic acid by Pseudomonas rhodesiae CIP 107491. Biores Technol 99:4590–4596

    Article  CAS  Google Scholar 

  • Linares D, Fontanille P, Larroche C (2009) Exploration of α-pinene degradation pathway of Pseudomonas rhodesiae CIP 107491. Application to novalic acid production in a bioreactor. Food Res Int 42:461–469

    Article  CAS  Google Scholar 

  • Lindmark-Henriksson M (2003) Biotransformations of turpentine constituents: oxygenation and esterification. Doctoral Thesis, Stockholm, Sweden

  • Longo MA, Sanromán MS (2006) Production of food aroma compounds. Food Technol Biotechnol 44:335–353

    CAS  Google Scholar 

  • MacRae IC, Alberts V, Carman RM, Shaw IM (1979) Products of 1,8-cineole oxidation by a pseudomonad. Aust J Chem 32:917–922

    Article  CAS  Google Scholar 

  • Madyastha KM (1984) Microbial transformations of acyclic monoterpenes. Proc Indian Acad Sci (Chem Sci) 93:677–686

    CAS  Google Scholar 

  • Madyastha KM, Bhattacharyya PK (1968) Microbiological transformation of terpenes. Part XIII. Pathways for degradation of p-cymene in a soil pseudomonad (PL-strain). Indian J Biochem 5:161–167

    Google Scholar 

  • Madyastha KM, Renganathan V (1983) Biodegradation of acetates of geraniol, nerol and citronellol by P. incognita: isolation and identification of metabolites. Indian J Biochem Biophys 20:136–140

    CAS  Google Scholar 

  • Madyastha K, Bhattacharyya PK, Vaidyanathan CS (1977) Metabolism of monoterpene alcohol, linalool, by a soil pseudomonad. Can J Microbiol 3:230–239

    Article  Google Scholar 

  • Maróstica MR, Pastore GM (2007) Production of R-(+)-α-terpineol by the biotransformation of limonene from orange essential oil, using cassava waste water as medium. Food Chem 101:345–350

    Article  CAS  Google Scholar 

  • Migula W (1894) Über ein neues System der Bakterien. Arb Bakteriol Inst Karlsruhe 1:235–328

    Google Scholar 

  • Mirata MA, Heerd D, Schrader J (2009) Integrated bioprocess for the oxidation of limonene to perillic acid with Pseudomonas putida DSM 12264. Process Biochem 44:764–771

    Article  CAS  Google Scholar 

  • Mizutani S, Hayashi T, Ueda H, Tstsumom C (1971) Microbiological conversion of terpenes. Part IX. Conversion of linalool. Nippon Nogei Kagaku Kaishi 45:368–373

    Article  CAS  Google Scholar 

  • Molina G, Pimentel MR, Bertucci TCP, Pastore GM (2012) Application of fungal endophytes in biotechnological processes. Chem Eng Trans 27:289–294

    Google Scholar 

  • Morris CE, Sands DC, Vinatzer BA, Glaux C, Guilbaud C, Buffière A, Yan S, Dominguez H, Thompson BM (2008) The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle. ISME J 2:231–334

    Google Scholar 

  • Murakami T, Ichimoto I, Tstsumom C (1973) Microbiological conversion of linalool. Nippon Nogei Kagaku Kaishi 47:699–703

    Article  CAS  Google Scholar 

  • Nakajima O, Iriye R, Hayashi T (1978) Conversion of (−)-menthone by Pseudomonas putida strain YK-2: metabolic intermediate and stereochemical structure of the metabolic products. Nippon Nagei Kagaku Kaishi 52:167–174

    Article  CAS  Google Scholar 

  • Narbad A, Gasson MJ (1998) Metabolism of ferulic acid to vanillin using a novel CoA-dependent pathway in a newly-isolated strain of Pseudomonas fluorescens. Microbiol 144:1397–1405

    Article  CAS  Google Scholar 

  • Narushima H, Omori T, Minoda Y (1982) Microbial oxidation of 0-myrcene. In: Vezina C, Singh K (eds) Advances in biotechnology, vol 3. Pergamon Press: Oxford, pp 525–531

  • Noma Y (1977) Conversion of the analogues of carvone and dihydrocarvone by Pseudomonas ovalis, strain 6–1, Biochemical reduction of terpenes, part VII. Nippon Nogeikagaku Kaishi 51:463–470

    Article  Google Scholar 

  • Noma Y, Nonomura S, Sakai H (1974) Conversion of (−)-carvotanacetone and (+)-carvotanacetone by Pseudomonas ovalis, strain 6–1. Agric Biol Chem 38:1637–1642

    Article  CAS  Google Scholar 

  • Noma Y, Nonomura S, Sakai H (1975) Epimerization of (−)-isodihydrocarvone to (−)-dihydrocarvone by Pseudomonas fragi IFO 3458. Agric Biol Chem 39:437–441

    Article  CAS  Google Scholar 

  • Oh B-T, Shea PJ, Drijber RA, Vasilyeva GK, Sarath G (2003) TNT biotransformation and detoxification by a Pseudomonas aeruginosa strain. Biodg 14:309–319

    Article  CAS  Google Scholar 

  • Overhage J, Priefert H, Steinbüchel A (1999a) Biotransformation of eugenol to vanillin by a mutant of Pseudomonas sp. strain HR199 constructed by disruption of the vanillin dehydrogenase (vdh) gene. Appl Environ Microbiol 52:820–828

    CAS  Google Scholar 

  • Overhage J, Priefert H, Steinbüchel A (1999b) Biochemical and genetic analyses of ferulic acid catabolism in Pseudomonas sp. strain HR199. Appl Environ Microbiol 65:4837–4847

    CAS  Google Scholar 

  • Palleroni NJ (1992) Introduction to the family Pseudomonadaceae. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, edn. Springer, New York, pp 3071–3085

    Google Scholar 

  • Palleroni NJ (2003) Prokaryote taxonomy of the 20th century and the impact of studies on the genus Pseudomonas: a personal view. Microbiol 149:1–7

    Article  CAS  Google Scholar 

  • Palleroni NJ, Doudoroff M, Stanier RY, Solanes RE, Mandel M (1970) Taxonomy of the aerobic pseudomonads: the properties of the Pseudomonas stutzeri group. J Gen Microbiol 60:215–231

    CAS  Google Scholar 

  • Palleroni NJ, Kunisawa R, Contopoulou R, Doudoroff M (1973) Nucleic acid homologies in the genus Pseudomonas. Int J Syst Bacteriol 23:333–339

    Article  CAS  Google Scholar 

  • Peix A, Ramírez-Bahena M-H, Velázquez E (2009) Historical evolution and current status of the taxonomy of genus Pseudomonas. Inf Gen Evol 9:1132–1147

    Google Scholar 

  • Pimentel MR, Molina G, Bertucci TCP, Pastore GM (2012) Biotransformation of citronellol in rose oxide by Pseudomonas spp. Chem Eng Trans 27:295–300

    Google Scholar 

  • Rabenhorst J (1996) Production of methoxyphenol-type natural aroma chemicals by biotransformation of eugenol with a new Pseudomonas sp. Appl Microbiol Biotechnol 46:470–474

    Article  CAS  Google Scholar 

  • Rama Devi J (1979) Microbiological transformations of terpenes. 26. Microbiological transformation of caryophyllene. Indian J Biochem Biophys 16:76–79

    Google Scholar 

  • Rama Devi J, Bhattacharyya PK (1977) Microbiological transformations of terpenes. Part XXIV. Pathways of degradation of linalool, geraniol, nerol and limonene by Pseudomonas incognita, linalool strain. Indian J Biochem Biophys 14:359–363

    Google Scholar 

  • Rama Devi J, Bhattacharyya PK (1978) Molecular rearrangements in the microbiological transformations of terpenes and the chemical logic of microbial processes. J Indian Chem Soc 55:1131–1137

    Google Scholar 

  • Rhodes PM, Winskill N (1985) Microbiological process for the preparation of 1-carvone. US Patent 4495284

  • Sakano K, Mukouyama M, Hayashi T (1999) Process for producing l-aspartic acid. US Patent 5939296

  • Sangodkar UMX, Mavinkurve S (1982) Isolation and characterization of α-santonin assimilating Pseudomonad. J Biosci 4:79–84

    Article  CAS  Google Scholar 

  • Sangodkar UMX, Mavinkurve S (1984) Environmental and nutritional requirements for optimal growth and transformation of alpha-santonin by Pseudomonas cichorii strain. S. Ind J Microbiol 2:202–206

    Google Scholar 

  • Sawamura N, Shima S, Sakai H (1976) Conversion of (−)-menthone by Pseudomonas fluorescens M-2. Agric Biol Chem 40:649–653

    Article  CAS  Google Scholar 

  • Schafer SL, Barrett WC, Kallarakal AT, Mitra B, Kozarich JW, Gerlt JA, Clifton JG, Petsko GA, Kenyon GL (1996) Mechanism of the reaction catalyzed by mandelate racemase: structure and mechanistic properties of the D270N mutant. Biochem 35:5662–5669

    Article  CAS  Google Scholar 

  • Schindler JE, Schmid RD (1982) Fragrance or aroma chemicals—microbial synthesis and enzymatic transformation—a review. Process Biochem 17:2–8

    CAS  Google Scholar 

  • Schrader J (2007) Microbial flavour production. In: Berger RG (ed) Flavours and fragrances—chemistry, bioprocessing, sustainability, edn. Springer, Heidelberg, pp 507–574

    Chapter  Google Scholar 

  • Schrader J, Berger RG (2001) Biotechnological production of terpenoid flavor and fragrance compounds. In: Rehm HJ (ed) Biotechnology, edn. Wiley, Weinheim, pp 374–422

    Google Scholar 

  • Schwammle B, Winkelhausen E, Kuzmanova S, Steiner W (2001) Isolation of carvacrol assimilating microorganisms. Food Technol Biotechnol 39:341–345

    CAS  Google Scholar 

  • Selifonov S (2006) Ketocampholenic acid derivatives and their use in fragrance applications. US Patent 0111270A1

  • Senuma M, Osamu O, Nobuyuki S, Masakatsu F, Tetsuya T (1989) Industrial production of d-aspartic acid and l-alanine from dl-aspartic acid using a pressurized column reactor containing immobilized Pseudomonas dacunhae cells. J Ferment Bioeng 67:233–237

    Article  CAS  Google Scholar 

  • Serra S, Fuganti C, Brenna E (2005) Biocatalytic preparation of natural flavours and fragrances. Trends Biotechnol 23:193–198

    Article  CAS  Google Scholar 

  • Seubert W (1960) Degradation of isoprenoid compounds by microorganisms: I. Isolation and characterization of an isoprenoid degrading bacterium, Pseudomonas citronellolis n. sp. J Bacteriol 79:426–434

    CAS  Google Scholar 

  • Seubert W, Fass E (1964) Studies on the bacterial degradation of isoprenoids. IV. The purification and properties of beta-isohexenylglutaconyl-CoA-hydratase and beta-hydroxy-beta-iso-hexenylglutaryl-CoA-lyase. Biochem Z 341:23–34

    CAS  Google Scholar 

  • Seubert W, Remberger U (1963) Studies on the bacterial degradation of isoprenoids. II. The role of carbon dioxide. Biochem Z 338:245–264

    CAS  Google Scholar 

  • Seubert W, Fass E, Remberger U (1963) Studies on the bacterial degradation of isoprenoids. III. Purification and properties of geranyl carboxylase. Biochem Z 338:265–275

    CAS  Google Scholar 

  • Shukla OP, Bhattacharyya PK (1968) Microbiological transformations of terpenes: part I—pathway of degradation of α- and β-pinene by a soil Pseudomonad (PL-strain). Indian J Biochem 5:92–98

    CAS  Google Scholar 

  • Shukla OP, Moholay MN, Bhattacharyya PK (1968) Microbiological transformation of terpenes. X. Fermentation of α- and β-pinenes. Ind J Biochem 5:79–91

    CAS  Google Scholar 

  • Siedenburg G., Breuer M, Jendrossek D (2012) Prokaryotic squalene-hopene cyclases can be converted to citronellal cyclases by single amino acid exchange. Appl Microbiol Biotechnol. doi:10.1007/s00253-012-4008-1

  • Sowden RJ, Yasmin S, Rees NH, Bell SG, Wong LL (2005) Biotransformation of the sesquiterpene (+)-valencene by cytochrome P450cam and P450BM-3. Org Biomol Chem 3:57–64

    Article  CAS  Google Scholar 

  • Speelmans G, Bijlsma A, Eggink G (1998) Limonene bioconversion to high concentrations of a single and stable product, perillic acid, by a solvent-resistant Pseudomonas putida strain. Appl Microbiol Biotechnol 50:538–544

    Article  CAS  Google Scholar 

  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FSL, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GKS, Wu Z, Paulsenk IT, Reizer J, Saier MH, Hancock REW, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964

    Article  CAS  Google Scholar 

  • Surburg H, Panten J (2006) Common fragrance and flavor materials: preparation, properties and uses. Wiley, Weinheim

    Book  Google Scholar 

  • Suresh B, Ritu T, Ravishankar GA (2006) Biotransformations as applicable to food industries. In: Shetty K, Paliyath G, Pometto A, Levin RD (eds) Food biotechnology, edn. Marcel Dekker, New York, pp 1655–1690

    Google Scholar 

  • Takamura Y, Kitamura I, Kono K, Ozaki A (1968) Process for producing l-aspartic acid. US Patent 3391059

  • Tandlich R, Brezná B, Dercová K (2000) The effect of terpenes on the biodegradation of polychlorinated biphenyls by Pseudomonas stutzeri. Chemosphere 44:1547–1555

    Article  Google Scholar 

  • Teunissen MJ, De Bont JAM (1995) Will terpenes be of any significance in future biotechnology. In: Etiévant P, Schreier P (eds) Bioflavor ’95. Cedex, Versailles, pp 329–330

    Google Scholar 

  • Tozoni D, Zacaria J, Vanderlinde R, Longaray Delamare AP, Echeverrigaray S (2010) Degradation of citronellol, citronellal and citronellyl acetate by Pseudomonas mendocina IBPse 105. Electr J Biotechnol 13:1–7

    Google Scholar 

  • Trudgill PW (1990) Microbial metabolism of terpenes—recent developments. Biodegrad 1:93–105

    Article  CAS  Google Scholar 

  • Tsou AY, Ransom SC, Gerlt JA, Buechter DD, Babbitt PC, Kenyon GL (1990) Mandelate pathway of Pseudomonas putida: sequence relationships involving mandelate racemase, (S)-mandelate dehydrogenase, and benzoylformate decarboxylase and expression of benzoylformate decarboxylase in Escherichia coli. Biochem 29:9856–9862

    Article  CAS  Google Scholar 

  • Tsukamoto Y, Nonomura S, Sakai H (1975) Formation of p-cis-menthan-1-ol from p-menthane by Pseudomonas mendocina SF. Agric Biol Chem 39:617–620

    Article  CAS  Google Scholar 

  • Tudroszen NJ, Kelly DP, Millis NF (1977) α-Pinene metabolism by Pseudomonas putida. Biochemic J 168:315–318

    CAS  Google Scholar 

  • Unno T, Kim SJ, Kanaly RA, Ahn JN, Kang SI, Hur HG (2007) Metabolic characterization of newly isolated Pseudomonas nitroreducens Jin1 growing on eugenol and isoeugenol. J Agric Food Chem 55:8556–8561

    Article  CAS  Google Scholar 

  • Van der Werf MJ, Bont JAM, Leak DJ (1997) Opportunities in microbial biotransformation of monoterpenes. Adv Biochem Eng Biotechnol 55:147–177

    Google Scholar 

  • Vandamme EJ, Soetaert W (2002) Bioflavours and fragrances via fermentation and biocatalysis. J Chem Technol Biotechnol 77:1323–1332

    Article  CAS  Google Scholar 

  • Vandenbergh PA, Cole RL (1986) Plasmid involvement in linalool metabolism by Pseudomonas fluorescens. Appl Environ Microbiol 52:939–940

    CAS  Google Scholar 

  • Walton NJ, Narbad A, Faulds CB, Williamson G (2000) Novel approaches to the biosynthesis of vanillin. Curr Opi Biotechnol 11:490–496

    Article  CAS  Google Scholar 

  • Washisu Y, Aida T, Hashimoto N, Kanisawa T (1993) Production of vanillin and its related compound by fermentation. JP Patent 5227980

  • Wigmore GJ, Ribbons DW (1980) p-Cymene pathway in Pseudomonas putida: selective enrichment of defective mutants by using halogenated substrate analogs. J Bacteriol 143:816–824

    CAS  Google Scholar 

  • Yamada M, Okada Y, Yoshida T, Nagasawa T (2007) Biotransformation of isoeugenol to vanillin by Pseudomonas putida IE27 cells. Appl Microbiol Biotechnol 73:1025–1030

    Article  CAS  Google Scholar 

  • Yoo SK, Day DF (2002) Bacterial metabolism of α- and β-pinene and related monoterpenes by Pseudomonas sp. strain PIN. Process Biochem 37:739–745

    Article  CAS  Google Scholar 

  • Yoshimoto T, Samejima M, Hanyu N, Koma T (1990) Dioxygenase for styrene cleavage manufactured by Pseudomonas. JP Patent 2195871

  • Zhang Y, Mao Y, Li K, Dong P, Liang R, Luo X (2011) Models of Pseudomonas growth kinetics and shelf life in chilled longissimus dorsi muscles of beef. Asian-Aust J Anim Sci 24:713–722

    Article  Google Scholar 

  • Zorn H, Neuser F, Berger RG (2004) Degradation of α-pinene oxide and [2H7]-2,5,6-trimethyl-hept-(2E)-enoic acid by Pseudomonas fluorescens NCIMB 11761. J Biotechnol 107:255–263

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Molina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molina, G., Pimentel, M.R. & Pastore, G.M. Pseudomonas: a promising biocatalyst for the bioconversion of terpenes. Appl Microbiol Biotechnol 97, 1851–1864 (2013). https://doi.org/10.1007/s00253-013-4701-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4701-8

Keywords

Navigation