Skip to main content
Log in

Beneficial effects of phytoestrogens and their metabolites produced by intestinal microflora on bone health

Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Cite this article

Abstract

Phytoestrogens are a class of bioactive compounds derived from plants and exert various estrogenic and antiestrogenic effects. Estrogen deficiency osteoporosis has become a serious problem in elderly women. The use of ovariectomized (OVX) rat or mice models to simulate the postmenopausal condition is well established. This review aimed to clarify the sources, biochemistry, absorption, metabolism, and mode of action of phytoestrogens on bone health in intervention studies. In vitro, phytoestrogens promote protein synthesis, osteoprotegerin/receptor activation of nuclear factor-kappa B ligand ratio, and mineralization by osteoblast-like cells (MC3T3-E1). In the OVX murine model, administration of phytoestrogens can inhibit differentiation and activation of osteoclasts, expression of tartrate-resistant acid phosphatase, and secretion of pyridinoline compound. Phytoestrogens also enhance bone formation and increase bone mineral density and levels of alkaline phosphatase, osteocalcin, osteopontin, and α1(I) collagen. Results of mechanistic studies have indicated that phytoestrogens suppress the rate of bone resorption and enhance the rate of bone formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Alcantara EH, Shin MY, Sohn HY, Park YM, Kim T, Lim JH, Jeong HJ, Kwon ST, Kwun IS (2011) Diosgenin stimulates osteogenic activity by increasing bone matrix protein synthesis and bone-specific transcription factor Runx2 in osteoblastic MC3T3-E1 cells. J Nutr Biochem 22:1055–1063

    Article  CAS  Google Scholar 

  • Allred CD, Twaddle NC, Allred KF, Goeppinger TS, Churchwell MI, Ju YH, Helferich WG, Doerge DR (2005) Soy processing affects metabolism and disposition of dietary isoflavones in ovariectomized BALB/c mice. J Agric Food Chem 53:8542–8550

    Article  CAS  Google Scholar 

  • Andlauer W, Kolb J, Fürst P (2000a) Absorption and metabolism of genistin in the isolated rat small intestine. FEBS Lett 475:127–130

    Article  CAS  Google Scholar 

  • Andlauer W, Kolb J, Stehle P, Fürst P (2000b) Absorption and metabolism of genistein in isolated rat small intestine. J Nutr 130:843–846

    CAS  Google Scholar 

  • Bhathena SJ, Velasquez MT (2002) Beneficial role of dietary phytoestrogens in obesity and diabetes. Am J Clin Nutr 76:1191–1201

    CAS  Google Scholar 

  • Bouxsein ML, Myers KS, Shultz KL, Donahue LR, Rosen CJ, Beamer WG (2005) Ovariectomy-induced bone loss varies among inbred strains of mice. J Bone Miner Res 20:1058–1092

    Article  Google Scholar 

  • Branca F (2003) Dietary phyto-oestrogens and bone health. Proc Nutr Soc 62:877–887

    Article  CAS  Google Scholar 

  • Cano A, Dapía S, Noguera I, Pineda B, Hermenegildo C, del Val R, Caeiro JR, García-Pérez MA (2008) Comparative effects of 17beta-estradiol, raloxifene and genistein on bone 3D microarchitecture and volumetric bone mineral density in the ovariectomized mice. Osteoporos Int 19:793–800

    Article  CAS  Google Scholar 

  • Carmichael SL, Gonzalez-Feliciano AG, Ma C, Shaw GM, Cogswell ME (2011) Estimated dietary phytoestrogen intake and major food sources among women during the year before pregnancy. Nutr J 10:105–114

    Article  CAS  Google Scholar 

  • Chen X, Garner SC, Quarles LD, Anderson JJ (2003) Effects of genistein on expression of bone markers during MC3T3-E1 osteoblastic cell differentiation. J Nutr Biochem 14:342–349

    Article  CAS  Google Scholar 

  • Chen J, Lin H, Hu M (2005) Absorption and metabolism of genistein and its five isoflavone analogs in human intestinal Caco-2 model. Cancer Chemother Pharmacol 55:159–169

    Article  CAS  Google Scholar 

  • Chen H, Zhou X, Emura S, Shoumura S (2009) Site-specific bone loss in senescence-accelerated mouse (SAMP6): a murine model for senile osteoporosis. Exp Gerontol 44:792–798

    Article  CAS  Google Scholar 

  • Chiang SS, Pan TM (2011) Antiosteoporotic effects of Lactobacillus-fermented soy skim milk on bone mineral density and the microstructure of femoral bone in ovariectomized mice. J Agric Food Chem 59:7734–7742

    Article  CAS  Google Scholar 

  • Chiang SS, Chang SP, Pan TM (2011) Osteoprotective effect of Monascus-fermented dioscorea in ovariectomized rat model of postmenopausal osteoporosis. J Agric Food Chem 59:9150–9157

    Article  CAS  Google Scholar 

  • Chiang SS, Liao JW, Pan TM (2012) Effect of bioactive compounds in lactobacilli-fermented soy skim milk on femoral bone microstructure of aging mice. J Sci Food Agric 92:328–335

    Article  CAS  Google Scholar 

  • de Kleijn MJ, van der Schouw YT, Wilson PW, Adlercreutz H, Mazur W, Grobbee DE, Jacques PF (2001) Intake of dietary phytoestrogens is low in post-menopausal women in the United States: the Framingham study. J Nutrition 131:1826–1832

    Google Scholar 

  • Delmas PD (2002) Treatment of postmenopausal osteoporosis. Lancet 359:2018–2026

    Article  CAS  Google Scholar 

  • Draper CR, Edel MJ, Dick IM, Randall AG, Martin GB, Prince RL (1997) Phytoestrogens reduce bone loss and bone resorption in oophorectomized rats. J Nutr 127:1795–1799

    CAS  Google Scholar 

  • Duncan AM, Phipps WR, Kurzer MS (2003) Phyto-oestrogens. Best Pract Res Clin Endocrinol Metab 17:253–271

    Article  CAS  Google Scholar 

  • Egermann M, Goldhahn J, Schneider E (2005) Animal models for fracture treatment in osteoporosis. Osteoporos Int 16:S129–S138

    Article  Google Scholar 

  • Emmanuel S, Amalraj T, Ignacimuthu S (2001) Hepatoprotective effect of coumestans isolated from the leaves of Wedelia calendulacea Less. in paracetamol induced liver damage. Indian J Exp Biol 39:1305–1307

    CAS  Google Scholar 

  • Filipović B, Sosić-Jurjević B, Ajdzanović V, Brkić D, Manojlović-Stojanoski M, Milosević V, Sekulić M (2010) Daidzein administration positively affects thyroid C cells and bone structure in orchidectomized middle-aged rats. Osteoporos Int 21:1609–1616

    Article  CAS  Google Scholar 

  • Fonseca D, Ward WE (2004) Daidzein together with high calcium preserve bone mass and biomechanical strength at multiple sites in ovariectomized mice. Bone 35:489–497

    Article  CAS  Google Scholar 

  • Fujioka M, Uehara M, Wu J, Adlercreutz H, Suzuki K, Kanazawa K, Takeda K, Yamada K, Ishimi Y (2004) Equol, a metabolite of daidzein, inhibits bone loss in ovariectomized mice. J Nutr 134:2623–2637

    CAS  Google Scholar 

  • Fujioka M, Sudo Y, Okumura M, Wu J, Uehara M, Takeda K, Hosokawa Y, Yamada K, Ikegami S, Ishimi Y (2007) Differential effects of isoflavones on bone formation in growing male and female mice. Metabolism 56:1142–1148

    Article  CAS  Google Scholar 

  • Garrett IR, Mundy GR (2002) The role of statins as potential targets for bone formation. Arthritis Res 4:237–240

    Article  Google Scholar 

  • Gennari C (1999) Calcitonin, bone-active isoflavones and vitamin D metabolites. Osteoporos Int 9:S81–S90

    Article  Google Scholar 

  • Gong G, Qin Y, Huang W (2011) Anti-thrombosis effect of diosgenin extract from Dioscorea zingiberensis C.H. Wright in vitro and in vivo. Phytomedicine 18:456–463

    Article  CAS  Google Scholar 

  • Hartholt KA, Oudshoorn C, Zielinski SM, Burgers PT, Panneman MJ, van Beeck EF, Patka P, van der Cammen TJ (2011) The epidemic of hip fractures: are we on the right track? PLoS One 6:e22227

    Article  CAS  Google Scholar 

  • Hertrampf T, Schleipen B, Offermanns C, Velders M, Laudenbach U, Diel P (2009) Comparison of the bone protective effects of an isoflavone-rich diet with dietary and subcutaneous administrations of genistein in ovariectomized rats. Toxicol Lett 184:198–203

    Article  CAS  Google Scholar 

  • Horiuchi N, Maeda T (2006) Statins and bone metabolism. Oral Dis 15:85–101

    Article  Google Scholar 

  • Hsu KH, Chang CC, Tsai HD, Tsai FJ, Hsieh YY (2008) Effects of yam and diosgenin on calpain systems in skeletal muscle of ovariectomized rats. Taiwan J Obstet Gynecol 47:180–186

    Article  Google Scholar 

  • Huang CH, Liu DZ, Jan TR (2010) Diosgenin, a plant-derived sapogenin, enhances regulatory T-cell immunity in the intestine of mice with food allergy. J Nat Prod 73:1033–1037

    Article  CAS  Google Scholar 

  • Ishimi Y (2009) Soybean isoflavones in bone health. Forum Nutr Basel Karger 61:104–116

    Article  CAS  Google Scholar 

  • Ishimi Y (2010) Dietary equol and bone metabolism in postmenopausal Japanese women and osteoporotic mice. J Nutr 140:1373S–1376S

    Article  CAS  Google Scholar 

  • Ishimi Y, Arai N, Wang X, Wu J, Umegaki K, Miyaura C, Takeda A, Ikegami S (2000) Difference in effective dosage of genistein on bone and uterus in ovariectomized mice. Biochem Biophys Res Commun 274:697–701

    Article  CAS  Google Scholar 

  • Iwaniec UT, Yuan D, Power RA, Wronski TJ (2006) Strain-dependent variations in the response of cancellous bone to ovariectomy in mice. J Bone Miner Res 21:1068–1074

    Article  CAS  Google Scholar 

  • Johnell O (1997) The socioeconomic burden of fractures: today and in the 21st century. Am J Med 103:20S–26S

    Article  CAS  Google Scholar 

  • Kanno S, Hirano S, Kayama F (2004) Effects of phytoestrogens and environmental estrogens on osteoblastic differentiation in MC3T3-E1 cells. Toxicology 196:137–145

    Article  CAS  Google Scholar 

  • Kärkkäinen M, Tuppurainen M, Salovaara K, Sandini L, Rikkonen T, Sirola J, Honkanen R, Jurvelin J, Alhava E, Kröger H (2010) Effect of calcium and vitamin D supplementation on bone mineral density in women aged 65–71 years: a 3-year randomized population-based trial (OSTPRE-FPS). Osteoporos Int 21:2047–2055

    Article  CAS  Google Scholar 

  • Keen R (2007) Osteoporosis: strategies for prevention and management. Best Pract Res Clin Rheumatol 21:109–122

    Article  Google Scholar 

  • Kim KW, Suh SJ, Lee TK, Ha KT, Kim JK, Kim KH, Kim DI, Jeon JH, Moon TC, Kim CH (2008) Effect of safflower seeds supplementation on stimulation of the proliferation, differentiation and mineralization of osteoblastic MC3T3-E1 cells. J Ethnopharmacol 115:42–49

    Article  Google Scholar 

  • Kim DW, Yoo KY, Lee YB, Lee KH, Sohn HS, Lee SJ, Cho KH, Shin YK, Hwang IK, Won MH, Kim DW (2009) Soy isoflavones mitigate long-term femoral and lumbar vertebral bone loss in middle-aged ovariectomized mice. J Med Food 12:536–541

    Article  CAS  Google Scholar 

  • Kim TH, Jung JW, Ha BG, Hong JM, Park EK, Kim HJ, Kim SY (2011) The effects of luteolin on osteoclast differentiation, function in vitro and ovariectomy-induced bone loss. J Nutr Biochem 22:8–15

    Article  CAS  Google Scholar 

  • Kimira Y, Tajima K, Ohta A, Ishimi Y, Katsumata S, Suzuki K, Adlercreutz H, Uehara M (2012) Synergistic effect of isoflavone glycosides and fructooligosaccharides on postgastrectomy osteopenia in rats. J Clin Biochem Nutr 51:156–160

    Article  CAS  Google Scholar 

  • Klinck J, Boyd SK (2008) The magnitude and rate of bone loss in ovariectomized mice differs among inbred strains as determined by longitudinal in vivo micro-computed tomography. Cif Tissue Int 83:70–79

    Article  CAS  Google Scholar 

  • Kröger H, Kärkkäinen M, Honkanen R (2010) Calcium and vitamin D in promotion of postmenopausal bone health. Womens Health (Lond Engl) 6:773–776

    Article  Google Scholar 

  • Lagari VS, Levis S (2010) Phytoestrogens and bone health. Curr Opin Endocrinol Diabetes Obes 17:546–553

    Article  CAS  Google Scholar 

  • Lee KH, Choi EM (2005) Biochanin A stimulates osteoblastic differentiation and inhibits hydrogen peroxide-induced production of inflammatory mediators in MC3T3-E1 cells. Biol Pharm Bull 28:1948–1953

    Article  CAS  Google Scholar 

  • Legette LL, Martin BR, Shahnazari M, Lee WH, Helferich WG, Qian J, Waters DJ, Arabshahi A, Barnes S, Welch J, Bostwick DG, Weaver CM (2009) Supplemental dietary racemic equol has modest benefits to bone but has mild uterotropic activity in ovariectomized rats. J Nutr 139:1908–1913

    Article  CAS  Google Scholar 

  • Li CY, Schaffler MB, Wolde-Semait HT, Hernandez CJ, Jepsen KJ (2005) Genetic background influences cortical bone response to ovariectomy. J Bone Miner Res 20:2150–2158

    Article  Google Scholar 

  • Liu Y, Hu M (2002) Absorption and metabolism of flavonoids in the Caco-2 cell culture model and a perfused rat intestinal model. Drug Metab Dispos 30:370–377

    Article  CAS  Google Scholar 

  • Mathey J, Puel C, Kati-Coulibaly S, Bennetau-Pelissero C, Davicco MJ, Lebecque P, Horcajada MN, Coxam V (2004) Fructooligosaccharides maximize bone-sparing effects of soy isoflavone-enriched diet in the ovariectomized rat. Calcif Tissue Int 75:169–179

    Article  CAS  Google Scholar 

  • Mathey J, Mardon J, Fokialakis N, Puel C, Kati-Coulibaly S, Mitakou S, Bennetau-Pelissero C, Lamothe V, Davicco MJ, Lebecque P, Horcajada MN, Coxam V (2007) Modulation of soy isoflavones bioavailability and subsequent effects on bone health in ovariectomized rats: the case for equol. Osteoporos Int 18:671–679

    Article  CAS  Google Scholar 

  • Messina MJ (1999) Legumes and soybeans: overview of their nutritional profiles and health effects. Am J Clin Nutr 70:439S–450S

    CAS  Google Scholar 

  • Michihara S, Tanaka T, Uzawa Y, Moriyama T, Kawamura Y (2012) Puerarin exerted anti-osteoporotic action independent of estrogen receptor-mediated pathway. J Nutr Sci Vitaminol 58:202–209

    Article  CAS  Google Scholar 

  • Mundy G, Garrett R, Harris S, Chan J, Chen D, Rossini G, Boyce B, Zhao M, Gutierrez G (1999) Stimulation of bone formation in vitro and in rodents by statins. Science 286:1946–1949

    Article  CAS  Google Scholar 

  • Office of the Surgeon General (US) (2004) Bone health and osteoporosis: a report of the surgeon general. Office of the Surgeon General (US), Rockville, MD, pp 1–404

    Google Scholar 

  • Ohtomo T, Uehara M, Peñalvo JL, Adlercreutz H, Katsumata S, Suzuki K, Takeda K, Masuyama R, Ishimi Y (2008) Comparative activities of daidzein metabolites, equol and O-desmethylangolensin, on bone mineral density and lipid metabolism in ovariectomized mice and in osteoclast cell cultures. Eur J Nutr 47:273–279

    Article  CAS  Google Scholar 

  • Ono Y, Fukaya Y, Imai S, Yamakuni T (2008) Beneficial effects of Ajuga decumbens on osteoporosis and arthritis. Biol Pharm Bull 31:1199–1204

    Article  CAS  Google Scholar 

  • Peacock M (1998) Effects of calcium and vitamin D insufficiency on the skeleton. Osteoporos Int 8:S45–S51

    Article  CAS  Google Scholar 

  • Pogoda P, Priemel M, Schilling AF, Gebauer M, Catalá-Lehnen P, Barvencik F, Beil FT, Münch C, Rupprecht M, Müldner C, Rueger JM, Schinke T, Amling M (2005) Mouse models in skeletal physiology and osteoporosis: experiences and data on 14839 cases from the Hamburg Mouse Archives. J BoneMiner Metab 23:97–102

    Article  Google Scholar 

  • Rachoń D, Seidlová-Wuttke D, Vortherms T, Wuttke W (2007) Effects of dietary equol administration on ovariectomy induced bone loss in Sprague–Dawley rats. Maturitas 58:308–315

    Article  CAS  Google Scholar 

  • Ren P, Ji H, Shao Q, Chen X, Han J, Sun Y (2007) Protective effects of sodium daidzein sulfonate on trabecular bone in ovariectomized rats. Pharmacology 79:129–136

    Article  CAS  Google Scholar 

  • Riggs BL, Khosla S, Melton LJ (1998) A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res 13:763–773

    Article  CAS  Google Scholar 

  • Setchell KD, Cassidy A (1999) Dietary isoflavones: biological effects and relevance to human health. J Nutr 129:758S–767S

    CAS  Google Scholar 

  • Simons R, Gruppen H, Bovee TF, Verbruggen MA, Vincken JP (2012) Prenylated isoflavonoids from plants as selective estrogen receptor modulators (phytoSERMs). Food Funct 3:810–827

    Article  CAS  Google Scholar 

  • Sliwiński L, Folwarczna J, Nowińska B, Cegieła U, Pytlik M, Kaczmarczyk-Sedlak I, Trzeciak H, Trzeciak HI (2009) A comparative study of the effects of genistein, estradiol and raloxifene on the murine skeletal system. Acta Biochim Pol 56:261–270

    Google Scholar 

  • Son IS, Kim JH, Sohn HY, Son KH, Kim JS, Kwon CS (2007) Antioxidative and hypolipidemic effects of diosgenin, a steroidal saponin of yam (Dioscorea spp.), on high-cholesterol fed rats. Biosci Biotechnol Biochem 71:3063–3071

    Article  CAS  Google Scholar 

  • Sugimoto E, Yamaguchi M (2000) Stimulatory effect of daidzein in osteoblastic MC3T3-E1 cells. Biochem Pharmacol 59:471–475

    Article  CAS  Google Scholar 

  • Suh KS, Koh G, Park CY, Woo JT, Kim SW, Kim JW, Park IK, Kim YS (2003) Soybean isoflavones inhibit tumor necrosis factor-alpha-induced apoptosis and the production of interleukin-6 and prostaglandin E2 in osteoblastic cells. Phytochemistry 63:209–215

    Article  CAS  Google Scholar 

  • Suh KS, Choi EM, Kwon M, Chon S, Oh S, Woo JT, Kim SW, Kim JW, Kim YS (2009) Kaempferol attenuates 2-deoxy-d-ribose-induced oxidative cell damage in MC3T3-E1 osteoblastic cells. Biol Pharm Bull 32:746–749

    Article  CAS  Google Scholar 

  • Taguchi H, Chen H, Yano R, Shoumura S (2006) Comparative effects of milk and soymilk on bone loss in adult ovariectomized osteoporosis rat. Okajimas Folia Anat Jpn 83:53–59

    Article  CAS  Google Scholar 

  • Thompson LU, Robb P, Serraino M, Cheung F (1991) Mammalian lignan production from various foods. Nutr Cancer 16:43–52

    Article  CAS  Google Scholar 

  • Thompson LU, Rickard SE, Cheung F, Kenaschuk EO, Obermeyer WR (1997) Variability in anticancer lignan levels in flaxseed. Nutr Cancer 27:26–30

    Article  CAS  Google Scholar 

  • Thompson LU, Boucher BA, Liu Z, Cotterchio M, Kreiger N (2006) Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans, and coumestan. Nutr Cancer 54:184–201

    Article  CAS  Google Scholar 

  • Tousen Y, Abe F, Ishida T, Uehara M, Ishimi Y (2011) Resistant starch promotes equol production and inhibits tibial bone loss in ovariectomized mice treated with daidzein. Metabolism 60:1425–1432

    Article  CAS  Google Scholar 

  • Tsuji M, Yamamoto H, Sato T, Mizuha Y, Kawai Y, Taketani Y, Kato S, Terao J, Inakuma T, Takeda E (2009) Dietary quercetin inhibits bone loss without effect on the uterus in ovariectomized mice. J Bone Miner Metab 27:673–681

    Article  CAS  Google Scholar 

  • Turner RT (1999) Mice, estrogen and postmenopausal osteoporosis. J Bone Miner Res 14:187–191

    Article  CAS  Google Scholar 

  • Uchiyama S, Yamaguchi M (2007) Genistein and zinc synergistically enhance gene expression and mineralization in osteoblastic MC3T3-E1 cells. Int J Mol Med 19:213–220

    CAS  Google Scholar 

  • Uchiyama S, Yamaguchi M (2008) Anabolic effect of beta-cryptoxanthin in osteoblastic MC3T3-E1 cells is enhanced with 17beta-estradiol, genistein, or zinc sulfate in vitro: the unique effect with zinc on Runx2 and alpha1(I) collagen mRNA expressions. Mol Cell Biochem 307:209–219

    Article  CAS  Google Scholar 

  • Usui T (2006) Pharmaceutical prospects of phytoestrogens. Endocr J 53:7–20

    Article  CAS  Google Scholar 

  • Wang HJ, Murphy PA (1994) Isoflavone content in commercial soybean foods. J Agric Food Chem 42:1666–1673

    Article  CAS  Google Scholar 

  • Wang SF, Jiang Q, Ye YH, Li Y, Tan RX (2005) Genistein derivatives as selective estrogen receptor modulators: sonochemical synthesis and in vivo anti-osteoporotic action. Bioorg Med Chem 13:4880–4890

    Article  CAS  Google Scholar 

  • Wang ZL, Sun JY, Wang DN, Xie YH, Wang SW, Zhao WM (2006) Pharmacological studies of the large-scaled purified genistein from Huaijiao (Sophora japonica-Leguminosae) on anti-osteoporosis. Phytomedicine 13:718–723

    Article  CAS  Google Scholar 

  • Wang J, Shang F, Jiang R, Liu L, Wang S, Hou J, Huan M, Mei Q (2007a) Nitric oxide-donating genistein prodrug: design, synthesis, and bioactivity on MC3T3-E1 cells. J Pharmacol Sci 104:82–89

    Article  CAS  Google Scholar 

  • Wang JW, Xu SW, Yang DS, Lv RK (2007b) Locally applied simvastatin promotes fracture healing in ovariectomized rat. Osteoporos Int 18:1641–1650

    Article  CAS  Google Scholar 

  • Wang J, Shang F, Mei Q, Wang J, Zhang R, Wang S (2008) NO-donating genistein prodrug alleviates bone loss in ovariectomised rats. Swiss Med Wkly 138:602–607

    CAS  Google Scholar 

  • Ward WE, Kim S, Chan D, Fonseca D (2005) Serum equol, bone mineral density and biomechanical bone strength differ among four mouse strains. J Nutr Biochem 16:743–749

    Article  CAS  Google Scholar 

  • Wronski TJ, Dann LM, Scott KS, Cintrón M (1989) Long-term effects of ovariectomy and aging on the rat skeleton. Calcif Tissue Int 45:360–366

    Article  CAS  Google Scholar 

  • Wu J, Wang XX, Takasaki M, Ohta A, Higuchi M, Ishimi Y (2001) Cooperative effects of exercise training and genistein administration on bone mass in ovariectomized mice. J Bone Miner Res 16:1829–1836

    Article  CAS  Google Scholar 

  • Wu J, Wang X, Chiba H, Higuchi M, Nakatani T, Ezaki O, Cui H, Yamada K, Ishimi Y (2004) Combined intervention of soy isoflavone and moderate exercise prevents body fat elevation and bone loss in ovariectomized mice. Metabolism 53:942–948

    Article  CAS  Google Scholar 

  • Wu XT, Wang B, Wei JN (2009) Coumestrol promotes proliferation and osteoblastic differentiation in rat bone marrow stromal cells. J Biomed Mater Res B Appl Biomater 90:621–628

    Google Scholar 

  • Xie F, Wu CF, Zhang Y, Yao XS, Cheung PY, Chan AS, Wong MS (2005) Increase in bone mass and bone strength by Sambucus williamsii HANCE in ovariectomized rats. Biol Pharm Bull 28:1879–1885

    Article  CAS  Google Scholar 

  • Xu X, Harris KS, Wang HJ, Murphy PA, Hendrich S (1995) Bioavailability of soybean isoflavones depends upon gut microflora in women. J Nutr 125:2307–2315

    CAS  Google Scholar 

  • Yamaguchi M, Sugimoto E (2000) Stimulatory effect of genistein and daidzein on protein synthesis in osteoblastic MC3T3-E1 cells: activation of aminoacyl-tRNA synthetase. Mol Cell Biochem 214:97–102

    Article  CAS  Google Scholar 

  • Yamaguchi K, Shinohara C, Kojima S, Sodeoka M, Tsuji T (1999) (2E,6R)-8-hydroxy-2,6-dimethyl-2-octenoic acid, a novel anti-osteoporotic monoterpene, isolated from Cistanche salsa. Biosci Biotechnol Biochem 63:731–735

    Article  CAS  Google Scholar 

  • Yen ML, Su JL, Chien CL, Tseng KW, Yang CY, Chen WF, Chang CC, Kuo ML (2005) Diosgenin induces hypoxia-inducible factor-1 activation and angiogenesis through estrogen receptor-related phosphatidylinositol 3-kinase/Akt and p38 mitogen-activated protein kinase pathways in osteoblasts. Mol Pharmacol 68:1061–1073

    Article  CAS  Google Scholar 

  • Yin J, Tezuka Y, Kouda K, Tran QL, Miyahara T, Chen Y, Kadota S (2004a) Antiosteoporotic activity of the water extract of Dioscorea spongiosa. Biol Pharm Bull 27:583–586

    Article  CAS  Google Scholar 

  • Yin J, Tezuka Y, Kouda K, Tran QL, Miyahara T, Chen Y, Kadota S (2004b) In vivo antiosteoporotic activity of a fraction of Dioscorea spongiosa and its constituent, 22-O-methylprotodioscin. Planta Med 70:220–226

    Article  CAS  Google Scholar 

  • Yin J, Han N, Liu Z, Song S, Kadota S (2010) The in vitro antiosteoporotic activity of some glycosides in Dioscorea spongiosa. Biol Pharm Bull 33:316–320

    Article  CAS  Google Scholar 

  • Yuan B, Zhen H, Jin Y, Xu L, Jiang X, Sun S, Li C, Xu H (2012) Absorption and plasma disposition of genistin differ from those of genistein in healthy women. J Agric Food Chem 60:1428–1436

    Article  CAS  Google Scholar 

  • Zhang Y, Li XL, Lai WP, Chen B, Chow HK, Wu CF, Wang NL, Yao XS, Wong MS (2007) Anti-osteoporotic effect of Erythrina variegata L. in ovariectomized rats. J Ethnopharmacol 109:165–169

    Article  Google Scholar 

  • Zhang Y, Li XL, Yao XS, Wong MS (2008) Osteogenic activities of genistein derivatives were influenced by the presence of prenyl group at ring A. Arch Pharm Res 31:1534–1539

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzu-Ming Pan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chiang, SS., Pan, TM. Beneficial effects of phytoestrogens and their metabolites produced by intestinal microflora on bone health. Appl Microbiol Biotechnol 97, 1489–1500 (2013). https://doi.org/10.1007/s00253-012-4675-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4675-y

Keywords

Navigation