Skip to main content

Microbial production of poly(hydroxybutyrate) from C1 carbon sources

An Erratum to this article was published on 14 April 2013

Abstract

Polyhydroxybutyrate (PHB) is an attractive substitute for petrochemical plastic due to its similar properties, biocompatibility, and biodegradability. The cost of scaled-up PHB production inhibits its widespread usage. Intensive researches are growing to reduce costs and improve thermomechanical, physical, and processing properties of this green biopolymer. Among cheap substrates which are used for reducing total cost of PHB production, some C1 carbon sources, e.g., methane, methanol, and CO2 have received a great deal of attention due to their serious role in greenhouse problem. This article reviews the fundamentals of strategies for reducing PHA production and moves on to the applications of several cheap substrates with a special emphasis on methane, methanol, and CO2. Also, some explanation for involved microorganisms including the hydrogen-oxidizing bacteria and methanotrophs, their history, culture condition, and nutritional requirements are given. After description of some important strains among the hydrogen-oxidizing and methanotrophic producers of PHB, the article is focused on limitations, threats, and opportunities for application and their future trends.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Ackermann JU, Babel W (1997) Growth-associated synthesis of poly (hydroxybutyric acid) in Methylobacterium rhodesianum as an expression of internal bottleneck. Appl Microbiol Biotechnol 47:144–149

    CAS  Article  Google Scholar 

  • Ackermann JU, Babel W (1998) Approaches to increase the economy of the PHB production. Polymer Degrad Stabil 59:183–186

    CAS  Article  Google Scholar 

  • Akaraonye E, Keshavarz T, Roy I (2010) Production of polyhydroxyalkanoates: the future green materials of choice (review). J Chem Technol Biotechnol 85:732–743

    CAS  Article  Google Scholar 

  • Albuquerque MGE, Eiro M, Torres C, Nunes BR, Reis MAM (2007) Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses. J Biotechnol 130:411–421

    CAS  Article  Google Scholar 

  • Ammann ECB, Reed L, Durichek JE (1968) Gas consumption and growth rate of Hydrogenomonas eutropha in continuous culture. Appl Microbiol 16:822–826

    CAS  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    CAS  Google Scholar 

  • Anderson AJ, Williams DR, Taidi B, Dawes EA, Ewing DF (1992) Studies on copolyester synthesis by Rhodoccocus ruber and factors influencing the molecular mass of polyhydroxybutyrate accumulated by Methylobacterium extorquens and Alcaligenes etrophus. FEMS Microbiol Rev 103:93–102

    CAS  Article  Google Scholar 

  • Anthony C (1982) The biochemistry of methylotrophs. Academic, New York

    Google Scholar 

  • Aragno M, Schlegel HG (1992) The mesophilic hydrogen oxidizing (Knallgas) bacteria. In: Balows A, Triiper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer, New York, pp 344–384

    Google Scholar 

  • Asada Y, Miyake M, Miyake J, Kurane R, Tokiwa Y (1999) Photosynthetic accumulation of poly(hydroxybutyrate) by cyanobacteria the metabolism and potential for CO2 recycling. Int J Biol Macromol 25:37–42

    CAS  Article  Google Scholar 

  • Asenjo JA, Suk J (1986) Microbial conversion of methaneintopoly-beta-hydroxybutrate (PHB)-growth and intracellular product accumulation in a type-II methanotroph. J Ferment Technol 64:271–278

    CAS  Article  Google Scholar 

  • Auman AJ, Speake CC, Lidstrom ME (2001) nifH sequences and nitrogen fixation in type I and type II methanotrophs. Appl Environ Microbiol 67:4009–4016

    CAS  Article  Google Scholar 

  • Babel W (1992) Pecularities of methylotrophs concerning over flow metabolism, especially the synthesis of polyhydroxyalkanoates. FEMS Microbiol Rev 103:141–148

    CAS  Article  Google Scholar 

  • Babel W, Mothes G (1994) Methylobacterium rhodesianum MB 126 possesses two acetoacetyl-CoA reductases. Arch Microbiol 161:277–280

    Google Scholar 

  • Bae S, Kwak K, Kim S, Chung S, Igarashi Y (2001) Isolation and characterization of CO2-fixing hydrogen-oxidizing marine bacteria. J Biosci Bioeng 91:442–448

    CAS  Google Scholar 

  • Bengtsson S, Hallquist J, Werker A, Welander T (2007) Acidogenic fermentation of industrial wastewaters: effects of chemostat retention time and pH on volatile fatty acids production. J Biochem Eng 40:492–499

    Article  CAS  Google Scholar 

  • Bhubalan K, Loo CY, Lee WH, Yamamoto T, Doi Y, Sudesh K (2008) Controlled biosynthesis and characterization of poly(3-hydroxybutyrate-3-hydroxyvalerate-co-3-hydroxyhexanoate) from mixtures of palm kernel oil and 3HV-precursors. Polymer Degrad Stabil 93:17–23

    CAS  Article  Google Scholar 

  • Bongers L (1970) Energy generation and utilization in hydrogen bacteria. J Bacteriol 104:145–151

    CAS  Google Scholar 

  • Bormann EJ, Leißner M, Roth M, Beer B, Metzner K (1998) Production of polyhydroxybutyrate by Ralstonia eutropha from protein hydrolysates. Appl Microbiol Biotechnol 50:604–607

    CAS  Article  Google Scholar 

  • Bourque D, Ouellette B, Andre G, Groleau D (1992) Production of poly-β-hydroxybutyrate from methanol: characterization of a new isolate of Methylobacterium extorquens. Appl Microbiol Biotechnol 37:7–12

    CAS  Article  Google Scholar 

  • Bourque D, Pomerleau Y, Groleau D (1995) High-cell-density production of poly-β-hydroxybutyrate (PHB) from Methylobacterium extorquens: production of high-molecular-mass PHB. Appl Microbiol Biotechnol 44:367–376

    CAS  Article  Google Scholar 

  • Bowman JP (2001) Family I. Methylococcaceae and Family V. Methylocystaceae. In: Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore, pp 256–270, pp. 411–420

  • Bowman JP (2006) The methanotrophs-the families Methylococcacceae and Methylocystaceae. In: The prokaryotes a: handbook on the biology of bacteria. Springer, NewYork, pp 266–289

  • Bowman JP, Sly LI, Nichols PD, Hayward A (1993) Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int J Syst Bacteriol 43:735–753

    Article  Google Scholar 

  • Brandi H, Gross RA, Lenz RW, Fuller RC (1990) Plastic from bacteria and for bacteria: poly (β-hydroxyalkanoates) as natural, biocompatible, and biodegradable polyesters. Adv Biochem Eng Biotechnol 41:77–93

    Google Scholar 

  • Braunegg G, Lefebvre G, Genser KF (1998) Poly hydroxyalkanoate, biopolyesters from renewable resources: physiological and engineering aspects. J Biotechnol 65:127–161

    CAS  Article  Google Scholar 

  • Budde CF, Riedel SL, Hübner F, Risch S, Popović MK, ChoKyun R, Sinskey AJ (2011) Growth and polyhydroxybutyrate production by Ralstonia eutropha in emulsified plant oil medium. Appl Microbiol Biotechnol 89:1611–1619

    CAS  Article  Google Scholar 

  • Byrom D (1987) Polymer synthesis by microorganisms: technology and economics. Trends Biotechnol 5:246–250

    CAS  Article  Google Scholar 

  • Cebron A, Bodrossy L, Stralis-Pavese N, Singer AC, Thompson IP, Prosser JI, Murrell JC (2007) Nutrient amendments in soil DNA stable isotope probing experiments reduce the observed methanotroph diversity. Appl Environ Microbiol 73:798–807

    CAS  Article  Google Scholar 

  • Chanprateep S (2010) Current trends in biodegradable polyhydroxyalkanoates (review). J Biosci Bioeng 110:621–632

    CAS  Article  Google Scholar 

  • Chen CW, Don TM, Yen HF (2006) Enzymatic extruded starch as a carbon source for the production of poly(3-hydroxybutyrateco-3-hydroxyvalerate by Haloferax mediterranei. Process Biochem 41:2289–2296

    CAS  Article  Google Scholar 

  • Choi J, Lee SY (1997) Process analysis and economic evaluation for PHB production by fermentation. Bioprocess Eng 17:335–342

    CAS  Article  Google Scholar 

  • Choi J, Lee SY (1999a) Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation. Appl Microbiol Biotechnol 51:13–21

    CAS  Article  Google Scholar 

  • Choi J, Lee SY (1999b) High-level production of poly(3-hydroxybutyrateco-3-hydroxyvalerate) by fed-batch culture of recombinant Escherichia coli. Appl Environ Microbiol 65:4363–4368

    CAS  Google Scholar 

  • Choi J, Kim JH, Daneial M, Lebeault JM (1989) Optimization of growth medium and poly-β-hydroxybutyric acid production from methanol in Methylobacterium organophilium. Korean J Appl Microbiol Bioeng 17:392–396

    CAS  Google Scholar 

  • Dalton H (1981) Methane mono-oxygenase from a variety of microbes. In: Microbial growth on C, compounds.Heyden & Son, London, pp 1–10

  • Daniel M, Choi JH, Kim JH, Lebeault JM (1992) Effect of nutrient deficiency on accumulation and relative molecular weight of poly-β-hydroxybutyric acid by methylotrophic bacterium, Pseudomonas 135. Appl Microbiol Biotechnol 37:702–706

    CAS  Google Scholar 

  • Dedysh SN (2002) Methanotrophic bacteria of acids phagnum bogs. Mikrobiologiia 71:741–754

    CAS  Google Scholar 

  • Dedysh SN, Berestovskaya YY, Vasylieva LV, Belova SE, Khmelenina VN, Suzina NE, Trotsenko YA, Liesack W, Zavarzin GA (2004) Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands. Int J Syst Evol Microbiol 54:151–156

    CAS  Article  Google Scholar 

  • Di Donato P, Anzelmo G, Tommonaro G, Fiorentino G, Nicolaus B, Poli A (2009) Vegetable wastes as suitable biomass feedstock for biorefineries. New Biotechnol 25(Suppl):S257

    Article  Google Scholar 

  • Dobroth ZT, Hu S, Coats ER, McDonald RG (2011) Polyhydroxybutyrate synthesis on biodiesel wastewater using mixed microbial consortia. Bioresour Technol 102:3352–3359

    CAS  Article  Google Scholar 

  • Doi Y (1990) Microbial polyesters. VHC Publishers, New York

    Google Scholar 

  • Doi Y, Steinbüchel A (2002) Biopolymers. Wiley, Weinheim

    Google Scholar 

  • Doronina NV, Ezhov VA, Trotsenko YA (2008) Growth of Methylobacteriumtrichosporium OB3b on methanol and poly-β-hydroxybutyrate biosynthesis. Appl Biochem Microbiol 44:182–184

    CAS  Article  Google Scholar 

  • Du G, Chen J, Yu J, Lun S (2001) Continuous production of poly-3-hydroxybutyrate by Ralstonia eutropha in a two-stage culture system. J Biotechnol 88:59–65

    CAS  Article  Google Scholar 

  • Du G, Chen LXL, Yu J (2004) High-efficiency production of bioplastics from biodegradable organic solids. J Polym Environ 12:89–94

    CAS  Article  Google Scholar 

  • Du C, Sabirova J, Soetaert W, Lin SKC (2012) Polyhydroxyalkanoates production from low-cost sustainable raw. Materials Curr Chem Biol 6(1):14–25

    CAS  Google Scholar 

  • Dunfield PF, Khmelenina VN, Suzina NE, Trotsenko YA, Dedysh SN (2003) Methylocella silvestris sp nov., a novel methanotroph isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 53:1231–1239

    CAS  Article  Google Scholar 

  • Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, Ly B, Saw JH, Zhou Z, Ren Y, Wang J, Mountain BW, Crowe MA, Weatherby TM, Bodelier PL, Liesack W, Feng L, Wang L, Alam M (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450:879–882

    CAS  Article  Google Scholar 

  • Fidler S, Dennis D (1992) Polyhydroxyalkanoate production in recombinant Escherichia coli. FEMS Microbiol Rev 103:231–236

    CAS  Article  Google Scholar 

  • Follner CG, Babel W, Valentin HE, Steinbüchel A (1993) Expression of polyhydroxy alkanoic-acid-biosynthesis genes in methylotrophic bacteria relying on the ribulose monophosphate pathway. Appl Microbiol Biotechnol 40:284–291

    Article  Google Scholar 

  • Foster JF, Litchfield JH (1964) A continuous culture apparatus for the microbial utilization of hydrogen produced by electrolysis of water in closed-cycle space systems. Biotechnol Bioeng 6:44l–456l

    Article  Google Scholar 

  • Fukui T, Doi Y (1998) Efficient production of polyhydroxyalkanoates from plant oils by Alcaligenes eutrophus and its recombinant strain. Appl Microbiol Biotechnol 49:333–336

    CAS  Article  Google Scholar 

  • Ganduri VSRK, Ghosh S, Patnaik PR (2005) Mixing control as a device to increase PHB production in batch fermentation with co-cultures of lactobacillus delbrueckii and Ralstonia eutropha. Process Biochem 40:257–264

    CAS  Article  Google Scholar 

  • Ghatnekar MS, Pai JS, Ganesh M (2002) Production and recovery of poly-3-hydroxybutyrate from Methylobacterium sp V49. J Chem Technol Biotechnol 77:444–448

    CAS  Article  Google Scholar 

  • Gouda MK, Swellam AE, Omar SH (2001) Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources. Microbiol Res 15:201–207

    Article  Google Scholar 

  • Govorukhina NI, Trotsenko YA (1991) Poly-β-hydroxybutyrate contents of methylotrophic bacteria with different routes methanol assimilation. Appl Biochem Microbiol 27:80–83

    Google Scholar 

  • Graham DW, Chaudhary JA, Hanson RS, Arnold RG (1993) Factors affecting competition between type I and type II methanotrophs in two-organism, continuous-flow reactors. Microb Ecol 25:1–17

    CAS  Article  Google Scholar 

  • Grothe E, Moo-Young M, Chisti Y (1999) Fermentation optimization for the production of poly (β-hydroxybutyric acid) microbial thermoplastic. Enz Microbial Technol 25:132–141

    CAS  Article  Google Scholar 

  • Haas R, Jin B, Zepf FT (2008) Production of poly(3-hydroxybutyrate) from waste potato starch. Biosci Biotechnol Biochem 72:253–256

    CAS  Article  Google Scholar 

  • Halami PM (2008) Production of polyhydroxyalkanoate from starch by the native isolate Bacillus cereus CFR06. World J Microbiol Biotechnol 24:805–812

    CAS  Article  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    CAS  Google Scholar 

  • Hayashi NR, Peerapornpisal Y, Nishihara H, Ishii M, Igarashi Y, Kodama T (1994) Isolation and cultivation of thermophilic cyanobacteria from hot springs of northern Thailand. J Ferment Bioeng 78:179–181

    Article  Google Scholar 

  • Haywood GW, Anderson AJ, Dawes EA (1989) A survey of the accumulation of novel polyhydroxyalkanoates by bacteria. Biotechnol Lett 11:471–476

    CAS  Article  Google Scholar 

  • Haywood GW, Anderson AJ, Ewing DF, Dawes EA (1990) Accumulation of a polyhydroxyalkanoates containing primarily 3-hydroxydecanoate from simple carbohydrate substrates by Pseudomonas sp. Strain NCIMB 40135. Appl Environ Microbiol 56:3354–3359

    CAS  Google Scholar 

  • Hazer DB, Kılıçay E, Hazer B (2012) Poly(3-hydroxyalkanoate)s: diversification and biomedical applications: a state of the art review. Mater Sci Eng 32:637–647

    CAS  Article  Google Scholar 

  • Heinzle E, Lafferty RM (1980) A kinetic model for growth and syntheseis of poly-β-hydroxybutyric acid (PHB) in Alkaligenes etruphus H16. Eur J Appl Microbiol Biotechnol 11:8–16

    CAS  Article  Google Scholar 

  • Helm J, Wendlandt KD, Rogge G, Kappelmeyer U (2006) Characterizing a stable methane-utilizing mixed culture used in the synthesis of a high-quality biopolymer in an open system. J Appl Microbiol 101:387–395

    CAS  Article  Google Scholar 

  • Helm J, Wendlandt KD, Jechorek M, Stottmeister U (2008) Potassium deficiency results in accumulation of ultra-high molecular weight poly-beta-hydroxybutyrate in a methane utilizing mixed culture. J Appl Microbiol 105:1054–1061

    CAS  Article  Google Scholar 

  • Heyer J, Berger U, Hardt M, Dunfield PF (2005) Methylohalobius crimeensis gen. nov., sp. nov., a moderately halophilic, methanotrophic bacterium isolated from hyper-saline lakes of Crimea. Int J Syst Evol Microbiol 55:1817–1826

    CAS  Article  Google Scholar 

  • Hilger U, Sattler K, Littkowsky U (1991) Studies on the growth associated accumulation of poly-hydroxybutyric acid with Methylobacterium rhodesianum Z. Zentralbl Mikrobiol 146:83–88

    CAS  Google Scholar 

  • Hofer P, Vermette P, Groleau D (2011) Production and characterization of polyhydroxyalkanoates by recombinant Methylobacterium extorquens: combining desirable thermal properties with functionality. Biochem Eng J 54:26–33

    Article  CAS  Google Scholar 

  • Hori K, Kaneko M, Tanji Y, Xing XH, Unno H (2002) Construction of self-disruptive Bacillus megaterium in response to substrate exhaustion for polyhydroxybutyrate production. Appl Microbiol Biotechnol 59:211–216

    CAS  Article  Google Scholar 

  • Huang TY, Duan KJ, Huang SY, Chen CW (2006) Production of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Haloferax mediterranei. J Ind Microbiol Biotechnol 33:701–706

    CAS  Article  Google Scholar 

  • Ibrahim MHA, Steinbüchel A (2010) High-cell-density cyclic fed-batch fermentation of a poly(3-hydroxybutyrate)-accumulating thermophile, Chelatococcus sp. strain MW10. Appl Environ Microbiol 76:7890–7895

    CAS  Article  Google Scholar 

  • Ishii M, Miyake T, Satoh T, Sugiyama H, Oshima Y, Kodama T, Igarashi Y (1997) Autotrophic carbon dioxide fixation in Acidianus brierleyi. Arch Microbiol 166:368–371

    Google Scholar 

  • Ishizaki A, Tanaka K (1990) Batch culture of Alcaligenes eutrophus ATCC 17697T using recycled gas closed circuit culture system. J Ferment Bioeng 69:170–174

    CAS  Article  Google Scholar 

  • Ishizaki A, Tanaka K (1991) Production of poly-β-hydroxybutyric acid from carbon dioxide by Alcaligenes eutrophus ATCC 17697T. J Ferment Bioeng 70:254–25

    Article  Google Scholar 

  • Ishizaki A, Tanaka K, Taga N (2001) Microbial production of poly(hydroxybutyrate) from CO2. Appl Microbiol Biotechnol 57:6–12

    CAS  Article  Google Scholar 

  • Islam T, Jensen S, Reigstad LJ, Larsen O, Birkeland NK (2008) Methane oxidation at 55 degrees C and pH 2 by a thermo acidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci USA 105:300–304

    CAS  Article  Google Scholar 

  • Jing D, Jiaying X (2011) Biosynthesis of PHB, a new packaging material by methane-utilizing mixed culture HD6T. Adv Mater Res 380:244–247

    Article  CAS  Google Scholar 

  • João MBT, Cavalheiro M, Catarina MD, Grandfils C, Fonseca MMR (2009) Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Proc Biochem 44:509–515

    Article  CAS  Google Scholar 

  • Kabilan S, Ayyasamy M, Jayavel S, Paramasamy G (2012) Pseudomonas sp. as a source of medium chain length polyhydroxyalkanoates for controlled drug delivery: perspective. Int J Microbiol 2012:317828

    Google Scholar 

  • Kaewkannetra P, Tanonkeo P, Tanamool V, Imai I (2008) Biorefinery of sweet sorghum juice into value added product of biopolymer. J Biotechnol 136:S412

    Article  Google Scholar 

  • Kallio RE, Harrington AA (1960) Sudanophilic granules and lipid of Pseudomonas methanica. J Bacteriol 80:321–324

    CAS  Google Scholar 

  • Kessler B, Witholt B (2001) Factors involved in the regulatory network of polyhydroxyalkanoate metabolism. J Biotechnol 86:97–104

    CAS  Article  Google Scholar 

  • Khanna S, Srivastava AK (2005a) Statistical media optimization studies for growth and PHB production by Ralstosnia eutropha. Process Biochem 40:2173–2182

    CAS  Article  Google Scholar 

  • Khanna S, Srivastava AK (2005b) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40:607–619

    CAS  Article  Google Scholar 

  • Khanna S, Srivastava AK (2005c) A simple structured mathematical model for biopolymer (PHB) production. Biotech Prog 21:830–838

    CAS  Article  Google Scholar 

  • Khosravi-Darani K, Vasheghani-Farahani E (2005a) Microorganisms and systems for production of poly(hydroxybutyrate) as a biodegradable polymer. Iran J Chem Chemical Eng 24:1–19

    CAS  Google Scholar 

  • Khosravi-Darani K, Vasheghani-Farahani E (2005b) Application of supercritical fluid extraction in biotechnology. Crit Rev Biotechnol 25:1–12

    Article  CAS  Google Scholar 

  • Khosravi-Darani K, Vasheghani-Farahani E, Shojaosadati SA (2003a) Application of the Plackett–Burman design for the optimization of poly(hydroxybutyrate) production by Ralstonia eutropha. Iran J Biotechnol 1:155–161

    Google Scholar 

  • Khosravi-Darani K, Vasheghani-Farahani E, Yamini Y (2003b) Solubility of poly hydroxybutyrate in supercritical carbon dioxide. J Chem Eng Data 48:860–863

    CAS  Article  Google Scholar 

  • Khosravi-Darani K, Vasheghani-Farahani E, Shojaosadati SA (2004a) Application of the Taguchi design for production of poly(hydroxybutyrate) by Ralstonia eutropha. Iran J Chem Chemical Eng 23:131–136

    Google Scholar 

  • Khosravi-Darani K, Vasheghani-Farahani E, Shojaosadati SA, Yamini Y (2004b) The effect of process variable on poly(hydroxybutyrate) recovery by supercritical fluid cell disruption. Biotechnol Prog 20:1757–1765

    CAS  Article  Google Scholar 

  • Khosravi-Darani K, Vasheghani-Farahani E, Tanaka K (2006) Hydrogen-oxidizing bacteria as poly(hydroxybutyrate) producers. Iran J Biotechnol 4:193–196

    Google Scholar 

  • Kim SB (2000) Production of poly(hydroxybutyrate) from inexpensive substrates. Enz Microb Technol 27:774–777

    CAS  Article  Google Scholar 

  • Kim SW, Kim P, Lee HS, Kim JH (1996) High production of poly-β-hydroxybutyrate (PHB) from Methylobacterium organophilum under potassium limitation. Biotechnol Lett 18:25–30

    CAS  Article  Google Scholar 

  • Kodama T, Igarashi Y, Minoda Y (1975) Isolation and culture conditions of a bacterium grown on hydrogen and carbon dioxide. Agr Biol Chem 36:77–82

    Article  Google Scholar 

  • Koller M, Bona R, Braunegg G, Hermann C, Horvat P, Kroutil M, Martinz J, Neto J, Pereira L, Varila P (2005) Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromol 6:561–565

    CAS  Article  Google Scholar 

  • Koller M, Bona R, Chiellini E, Fernandes EG, Horvat P, Kutschera C, Hesse P, Braunegg G (2008) Polyhydroxyalkanoate production from whey by Pseudomonas hydrogenovora. Bioresour Technol 99:4854–4863

    CAS  Article  Google Scholar 

  • Koller M, Hesse P, Salerno A, Reiterer A, Braunegg G (2011) A viable antibiotic strategy against microbial contamination in biotechnological production of polyhydroxyalkanoates from surplus whey. Biomass Bioenerg 35:748–753

    CAS  Article  Google Scholar 

  • Korotkova N, Lidstrom ME (2001) Connection between poly-betahydroxybutyrate biosynthesis and growth on C1 and C2 compounds in the methylotroph Methylobacterium extorquens AM1. J Bacteriol 183:1038–1046

    CAS  Article  Google Scholar 

  • Kozhevnikov IV, Volova TG, Hai T, Steinbüchel A (2010) Cloning and molecular organization of the polyhydroxyalkanoic acid synthase gene (phaC) of Ralstonia eutropha strain B5786. Appl Biochem Microbiol 46:140–147

    CAS  Article  Google Scholar 

  • Kunasundari B, Sudesh K (2011) Isolation and recovery of microbial polyhydroxyalkanoates. Exp Poly Lett 5:620–634

    Article  Google Scholar 

  • Lafferty RM (1979) Microbiological method. US Patent 4138291

  • Lara LM, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    Google Scholar 

  • Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14

    CAS  Article  Google Scholar 

  • Lee SY, Choi J, Wong HH (1999) Recent advances in poly(hydroxylalkanoate) production by bacterial fermentation: mini-review. Int J Biol Macromol 25:31–36

    CAS  Article  Google Scholar 

  • Lemos PC, Serafim LS, Reis MAM (2006) Synthesis of polyhydroxyalkanoates from different short-chain fatty acids by mixed cultures submitted to aerobic dynamic feeding. J Biotechnol 122:226–238

    CAS  Article  Google Scholar 

  • Lidstrom ME (2006) Aerobic methylotrophic prokaryotes. In: The prokaryotes, volume 2: ecophysiology and biochemistry. Springer, New York, pp 618–634

  • Listewnik HF, Wendlandt KD, Jechorek M, Mirschel G (2007) Process design for the microbial synthesis of poly-β-hydroxybutyrate (PHB) from natural gas. Eng Life Sci 7:278–282

    CAS  Article  Google Scholar 

  • López-Cuellar MR, Alba-Flores J, Gracida Rodríguez JN, Pérez-Guevara F (2011a) A viable antibiotic strategy against microbial contamination in biotechnologica production of polyhydroxyalkanoates from surplus whey. Biomass Bioenerg 35:748–753

    Article  CAS  Google Scholar 

  • López-Cuellar MR, Alba-Flores J, Gracida Rodríguez JN, Pérez-Guevara F (2011b) Production of polyhydroxyalkanoates (PHAs) with canola oil as carbon source. Int J Biol Macromol 48:74–80

    Article  CAS  Google Scholar 

  • Lu X, Zhang J, Wu Q, Chen GQ (2003) Enhanced production of poly (hydroxybutyrate-co-hydroxyhexanoate) via manipulation the fatty acid β-oxidation pathway in E. coli. FEMS Microbiol Lett 221:97–101

    CAS  Article  Google Scholar 

  • Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    CAS  Google Scholar 

  • Malik KA, Schlegel HG (1980) Enrichment and isolation of new nitrogen-fixing hydrogen oxidizing bacteria. FEMS Microbiol Lett 8:101–104

    CAS  Article  Google Scholar 

  • Miyake M, Erata M, Asada Y (1996) A thermophilic cyanobacterium, Synechococcus sp. MA19, capable of accumulating poly-β-hydroxybutyrate. J Ferment Bioeng 82(5):512–514

    CAS  Article  Google Scholar 

  • Miyake M, Takase K, Narato M, Khatipov E, Schnackenberg J, Shirai M, Kurane R, Asada Y (2000) Polyhydroxybutyrate production from carbon dioxide by cyanobacteria. Appl Biochem Biotechnol A Enzy Eng Biotechnol 84–86:991–1002

    Article  Google Scholar 

  • Mokhtari-Hosseini ZB, Vasheghani-Farahani E, Heidarzadeh-Vazifekhoran A, Shojaosadati SA, Karimzadeh R, Khosravi-Darani K (2009a) Statistical media optimization for growth and PHB production from methanol by a methylotrophic bacterium. Bioresour Technol 100:2436–2443

    CAS  Article  Google Scholar 

  • Mokhtari-Hosseini ZB, Vasheghani-Farahani E, Shojaosadati SA, Karimzadeh R, Heidarzadeh-Vazifekhoran A (2009b) Effect of feed composition on PHB production from methanol by HCDC Methylobacterium extorquens (DSMZ 1340). J Chem Technol Biotechnol 84:1136–1139

    CAS  Article  Google Scholar 

  • Morgan-Sagastume F, Karlsson A, Johansson P, Pratt S, Boon N, Lant P, Werker A (2010) Production of polyhydroxyalk in open, mixed cultures from a waste sludge stream containing high levels of soluble organics, nitrogen and phosphorus. Water Res 44:5196–5211

    CAS  Article  Google Scholar 

  • Morse M, Liao Q, Criddle CS, Frank CW (2011) An aerobic biodegradation of the microbial copolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate): effects of comonomer content, processing history, and semi-crystalline morphology. Polym 52:547–555

    CAS  Article  Google Scholar 

  • Mothes G, Rivera HS, Babel B (1997) Competition between β-ketothiolase and citrate synthase during poly (hydroxybutyrate) synthesis in Methylobacterium rhodesianum. Arch Microbiol 166:405–410

    Article  Google Scholar 

  • Mothes G, Ackermann JU, Babel W (1998) Regulation of poly(β-hydroxybutyrate) synthesis in Methylobacterium rhodesianum MB 126 growing on methanol or fructose. Arch Microbiol 169:360–363

    CAS  Article  Google Scholar 

  • Mulchandani A, Luong JHT, Grom C (1989) Substrate inhibition kinetics for microbial growth and syntheseis of poly-β-hydroxybutyric acid in Alkaligenes etruphus ATCC17679. Appl Microbiol Biotechnol 30:11–17

    CAS  Article  Google Scholar 

  • Murrell J, Dalton H (1983) Nitrogen-fixation in obligate methanotrophs. J Gen Microbiol 129:3481–3486

    CAS  Google Scholar 

  • Nguyen HH, Elliott SJ, Yip JH, Chan SI (1998) The particulate methane monooxygenase from M. capsulatus (Bath) is a novel copper-containing three-subunit enzyme. J Biol Chem 273:7957–7966

    CAS  Article  Google Scholar 

  • Nikel PI, Almeida AD, Melillo EC, Galvagno MA, Pettinari MJ (2006) New recombinant Escherichia coli strain tailored for the production of poly(3-hydroxybutyrate) from agro-industrial by-products. Appl Environ Microbiol 72:3949–3954

    CAS  Article  Google Scholar 

  • Nishihara H, Igarashi Y, Kodama T (1991) Growth characteristics and high cell-density cultivation of a marine obligately chemolithoautotrophic hydrogen-oxidizing bacterium Hydrogenovibrio marinus strain MH-110 under a continuous gas-flow system. J Ferment Bioeng 72:358–361

    CAS  Article  Google Scholar 

  • Oakley C, Murrell J (1988) Nifh genes in the obligate methane oxidizing bacteria. FEMS Microbiol Lett 49:53–57

    Article  Google Scholar 

  • Omar S, Rayes A, Eqaab A, Viss I, Steinbüchel A (2011) Optimization of cell growth and poly(3-hydroxbutyrate) accumulation on date syrup by a Bacillus megaterium strain. Biotechnol Lett 23:1119–1123

    Article  Google Scholar 

  • Op den Camp HJM, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, Jetten MSM, Birkeland NK, Pol A, Dunfield PF (2009) Environmental, genomic, and taxonomic perspectives on methanotrophic Verrucomicrobia. Env Microbiol Rep 1:293–306

    CAS  Article  Google Scholar 

  • Pantazaki AA, Papaneophytou CP, Pritsa AG, Liakopoulou-Kyriakides M, Kyriakidis DA (2009) Production of polyhydroxyalkanoates from whey by Thermus thermophilus HB8. Process Biochem 44:847–853

    CAS  Article  Google Scholar 

  • Papaneophytou CP, Pantazaki AA, Kyriakidis DA (2009) An extracellular polyhydroxybutyrate depolymerase in Thermus thermophilus HB8. Appl Microbiol Biotechnol 83:659–668

    CAS  Article  Google Scholar 

  • Park SJ, Ahn WS, Green PR, Lee SY (2001) Biosynthesis of Poly(hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) by metabolically engineered Escherichia coli strains. Biotechnol Bioeng 74:81–86

    CAS  Article  Google Scholar 

  • Patnaik PR (2005) Perspectives in the modelling and optimization of PHB production by pure and mixed cultures. CritRev Biotechnol 25:153–171

    CAS  Article  Google Scholar 

  • Patwardhan PR, Srivastava AK (2004) Model-based fed-batch cultivation of R. eutropha for enhanced biopolymer production. Biochem Eng J 20:21–28

    CAS  Article  Google Scholar 

  • Pfluger AR, Wu WM, Pieja AJ, Wan J, Rostkowski KH, Criddle CS (2011) Selection of type I and type II methanotrophic proteobacteria in a fluidized bed reactor under non-sterile conditions. Bioresour Technol 102:9919–9926

    CAS  Article  Google Scholar 

  • Pieja AJ, Rostkowski KH, Criddle CS (2011a) Distribution and selection of poly-hydroxybutyrate production capacity in methanotrophic proteobacteria. Microb Ecol 62:564–573

    CAS  Article  Google Scholar 

  • Pieja AJ, Sundstrom ER, Criddle CS (2011b) Poly-hydroxybutyrate metabolism in the type II methanotroph Methylocystis parvus OBBP. Appl Environ Microbiol 77:6012–6019

    CAS  Article  Google Scholar 

  • Pieja AJ, Sundstrom ER, Criddle CS (2012) Cyclic, alternating methane and nitrogen limitation increases PHB production in a methanotrophic community. Bioresour Technol 107:385–392

    CAS  Article  Google Scholar 

  • Pilla S (2011). Handbook of bioplastics and biocomposites engineering applications. Wiley, New York, pp. 373–396

  • Pinkwart M, Schneider K, Schlegel HG (1983) Purification and properties of the membrane-bound hydrogenase from N2-fixing Alcaligenes latus. Biochim Biophys Acta Protein Struct Mol Enzymol 745:267–278

    CAS  Article  Google Scholar 

  • Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MS, OpdenCamp HJ (2007) Methanotrophy below pH1 by a new Verrucomicrobia species. Nature 450:874–878

    CAS  Article  Google Scholar 

  • Povolo S (2010) Production of polyhydroxyalkanoates (PHAs) with canola oil as carbon source. Int J Biol Macromol 48:74–80

    Google Scholar 

  • Povolo S, Casella S (2003) Bacterial production of PHA from lactose and cheese whey permeate. Macromol Symp 197:1–9

    CAS  Article  Google Scholar 

  • Povolo S, Toffano P, Basaglia M, Casella S (2010) Polyhydroxyalkanoates production by engineered Cupriavidus necator from waste material containing lactose. Bioresour Technol 101:7902–7907

    CAS  Article  Google Scholar 

  • Powell KA, Collinson BA, Richardson KR (1980) Microbiological process for the production of poly(beta-hydroxybutyric acid) and microorganisms for use therein. Eur Patent Appl 80300432.4

  • Quillaguamán J, Hashim S, Bento F, Mattiasson B, Hatti-Kaul R (2005) Poly(β-hydroxybutyrate) production by a moderate halophile, Halomonas boliviensis LC1 using starch hydrolysate as substrate. J Appl Microbiol 99:151–157

    Article  CAS  Google Scholar 

  • Raje P, Srivastava AK (1998) Updated mathematical model fed-batch strategies for poly-β-hydroxybutyrate (PHB) ptoduction by Alkaligenes etruphus. Bioresour Technol 64:185–192

    CAS  Article  Google Scholar 

  • Ramadas NV, Singh SK, Soccol CR, Pandey A (2009) Polyhydroxybutyrate production using agro-industrial residue as substrate by Bacillus sphaericus NCIM 5149. Braz Arch Biol Technol 52:17–23

    CAS  Article  Google Scholar 

  • Ramadas NV, Soccol CR, Pandey A (2010) A statistical approach for optimization of polyhydroxybutyrate production by Bacillus sphaericus ncim 5149 under submerged fermentation using central composite design. Appl Biochem Biotechnol 162:996–1007

    CAS  Article  Google Scholar 

  • Reddy CSK, Ghai R, Rashmi R, Kalia VC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146

    CAS  Article  Google Scholar 

  • Repask R (1966) Characteristics of hydrogen bacteria. Biotechnol Bioeng 8:217–235

    Article  Google Scholar 

  • Ribera RG, Monteoliva-Sanchez M, Ramos-Cormenzana A (2001) Production of polyhydroxyalkanoates by Pseudomonas putida KT2442 harbouring pSK2665 in waste water from olive oil mills (alpechin). J Biotechnol 4:116–119

    Google Scholar 

  • Rudnik E (2008). Compostable polymer materials. Elsevier, Amsterdam, p. 21

  • Ryu HW, Hahn SK, Chang YK, Chang HN (1997) Production of poly(3-hydroxybutyrate) by high cell density fed-batch culture of Alcaligenes eutrophus with phosphate limitation. Biotechnol Bioeng 55:28–32

    CAS  Article  Google Scholar 

  • Santimano MC, Prabhu NN, Garg S (2009) PHA production using low-cost agro-industrial wastes by Bacillus sp. strain COL1/A6. J Microbiol 4:89–96

    CAS  Google Scholar 

  • Schink B, Schlegel H (1978) Hydrogen, metabolism in aerobic hydrogen oxidizing bacteria. Biochimie 60(3):297–305

    Google Scholar 

  • Schlegel HG, Gottschalk G, Von Bartha R (1961) Formation and utilization of poly-β-hydroxybutyic acid by Knallgas bacteria (Hydrogenomonas). Nature 191:463

    CAS  Article  Google Scholar 

  • Schrader J, Schilling M, Holtmann D, Sell D, Filho MV, Marx A, Vorholt JA (2009) Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria (review). Trends Biotechnol 27:107–115

    CAS  Article  Google Scholar 

  • Scott D, Brannan J, Higgins IJ (1981) The effect of growth conditions on intracytoplasmic membranes and methane mono-oxygenase activities in Methylosinus trichosporium OB3b. J Gen Microbiol 125:63–72

    CAS  Google Scholar 

  • Shah NN, Hanna ML, Jackson KJ, Taylor RT (1996a) Batch cultivation of Methylosinus trichosporium OB3B: IV production of hydrogen-driven soluble or particulate methane monooxygenase activity. Biotechnol Bioeng 45:229–238

    Article  Google Scholar 

  • Shah NN, Hanna ML, Taylor RT (1996b) Batch cultivation of Methylosinus trichosporiumOB3b. 5: characterization of poly(hydroxybutyrate) production under methane-dependent growth conditions. Biotechnol Bioeng 49:161–171

    CAS  Article  Google Scholar 

  • Shah-Hosseini S, Sadeghi MT, Khosravi-Darani K (2003) Simulation and model validation of batch poly(β-hydroxybutyrate) production process using Ralstonia eutropha. Iran J Chem Chemical Eng 22:35–41

    CAS  Google Scholar 

  • Sharma L, Mallick N (2008) Exploitation of municipal and aquacultural discharges for poly-β-hydroxybutyrate production in cyanobacterium, Nostoc muscorum. Res J Biotechnol 3:282–287

    Google Scholar 

  • Sheu DS, Wang YT, Lee CY (2000) Rapid detection of polyhydroxyalkanoate-accumulating bacteria isolated from the environment by colony PCR. Microbiol 146:2019–2025

    CAS  Google Scholar 

  • Simon-Colin C, Raguenes G, Crassous P, Moppert X, Guezennec J (2008) A novel MCL-PHA produced on coprah oil by Pseudomonas guezennei biovar.tikehau, isolated from a ‘kopara’ mat of French Polynesia. Int J BiolMacromol 43:176–181

    CAS  Article  Google Scholar 

  • Slepecky RA, Law JH (1961) Synthesis and degradation of poly-b-hydroxybutyric acid in connection with sporulation of Bacillus megaterium. J Bacteriol 82:37–42

    CAS  Google Scholar 

  • Solaiman D, Ashby R, Hotchkiss A, Foglia T (2006) Biosynthesis of medium-chain-length poly(hydroxyalkanoates) from soy molasses. Biotechnol Lett 28:57–162

    Article  CAS  Google Scholar 

  • Song H, Xin J, Zhang Y, Kong W, Xia C (2011) Poly-3-hydroxybutyrate production from methanol by Methylosinus trichosporium IMV3011 in the non-sterilized fed-batch fermentation. Afr J Microbiol Res 5:5022–5029

    CAS  Google Scholar 

  • Sonnleitner B, Heinzle E, Braunegg G, Lafferty RM (1979) Formal kinetics of poly-β-hydroxybutyric acid (PHB) production in Alkaligenes etruphus H16 and Mycoplana rubera R14 with respect to the dissolved oxygen tension in ammonium limited batch-cultures. Eur J Appl Microbiol Biotechnol 7:1–10

    CAS  Article  Google Scholar 

  • Steinbüchel A, Füchtenbusch B (1998) Bacterial and other biological systems for polyester production. Trends Biotechnol 16:419–427

    Article  Google Scholar 

  • Steinbüchel A, Lutke-Eversloh T (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem Eng J 16:81–96

    Article  CAS  Google Scholar 

  • Sudesh K, Doi AY (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555

    CAS  Article  Google Scholar 

  • Sugimoto T, Tsuge T, Tanaka K, Ishizaki A (1999) Control of acetic acid concentration by pH-stat continuous substrate feeding in heterotrophic culture phase of two-stage cultivation of Alcaligenes eutrophus for production of PHB from CO2, H2 and O2 under non-explosive condition. Biotechnol Bioeng 62:625–631

    CAS  Article  Google Scholar 

  • Suzuki T, Yamane T, Shimizu S (1986a) Mass production of poly-β-hydroxybutyric acid by fully automatic fed-batch culture of methylotroph. Appl Microbiol Biotechnol 23:322–329

    CAS  Article  Google Scholar 

  • Suzuki T, Yamane T, Shimizu S (1986b) Kinetics and effect of nitrogen source feeding on production of poly(hydroxybutyric acid) by fed-batch culture. Appl Microbiol Biotechnol 23:366–369

    Article  Google Scholar 

  • Suzuki T, Yamane T, Shimizu S (1986c) Mass production of (poly-hydroxybutyric acid) by fed-batch culture with controlled carbon/nitrogen feeding. Appl Microbiol Biotechnol 24:370–374

    CAS  Article  Google Scholar 

  • Suzuki T, Deguchi H, Yamane T, Shimizu S, Gekko K (1988) Control of molecular weight of (poly-hydroxybutyric acid) produced in fed-batch culture of Protomonas extorquence. Appl Microbiol Biotechnol 27:487–491

    CAS  Google Scholar 

  • Suzuki H, Kishimoto M, Kamoshita Y, Omasa T, Katakura Y, Suga KI (2000) On-line control of feeding of medium components to attain high cell density. Bioprocess Eng 22:433–440

    CAS  Article  Google Scholar 

  • Taga N, Tanaka K, Ishizaki A (1997) Effects of rheological change by addition of carboxymethylcellulose in culture media of an air-lift fermentor on poly-d-3-hydroxybutyric acid productivity in autotrophic culture of hydrogen-oxidizing bacterium. Alcaligenes eutrophus. Biotechnol Bioeng 53:529–533

    CAS  Article  Google Scholar 

  • Taidi B, Anderson AJ, Dawes EA, Byrom D (1994) Effect of carbon source and concentration on the molecular mass of poly(3-hydroxybutyrate) production by Methylobacterium extorquens and Alcaligenes etrophus. Appl Microbiol Biotechnol 40:786–790

    CAS  Article  Google Scholar 

  • Takeshita T, Ishizaki A (1996) Influence of hydrogen limitation on gaseous substrate utilization in autotrophic culture of Alcaligenes eutrophus ATCC 17697T. J Ferment Bioeng 81:83–86

    CAS  Article  Google Scholar 

  • Takeshita T, Tanaka K, Ishizaki A, Stanbury PF (1993a) Development of a dissolved hydrogen sensor and its application to evaluation of hydrogen mass transfer. J Ferment Bioeng 76:148–150

    CAS  Article  Google Scholar 

  • Takeshita T, Tanaka K, Ishizaki A, Stanbury PF (1993b) Studies on dissolved hydrogen behavior in autotrophic culture of A. eutrophus 17697T. J Fac Agr Kyushu Univ 38:55–64

    CAS  Google Scholar 

  • Tanaka K, Ishizaki A (1994) Production of poly-d-3-hydroxybutyric acid from carbon dioxide by a two-stage culture method employing Alcaligenes eutrophus ATCC 17697T. J Ferment Bioeng 77:425–427

    CAS  Article  Google Scholar 

  • Tanaka K, Ishizaki A, Takeshita T, Kanemaru T, Shimoji T, Kawano T (1993) Equipment and operation for fermentative PHB production using gaseous substrate to guarantee safety from explosion. J Chem Eng Japan 26:225–227

    CAS  Article  Google Scholar 

  • Tanaka K, Ishizaki A, Kanamaru T, Kawano T (1995) Production of poly(d-3-hydroxybutyrate) from CO2, H2, and CO2 by high cell density autotrophic cultivation of Alcaligenes eutrophus. Biotechnol Bioeng 45:268–275

    CAS  Article  Google Scholar 

  • Tanaka K, Miyawaki K, Yamaguchi A, Khosravi-Darani K, Matsusaki H (2011) Cell growth and P(3HB) accumulation from CO2 of a carbon monoxide-tolerant hydrogen-oxidizing bacterium, Ideonella sp. O-1. Appl Microbiol Biotechnol 92:1161–1169

    CAS  Article  Google Scholar 

  • Tohyama M, Patarinska T, Qiang Z, Shimizu K (2002) Modeling of the mixed culture and periodic control for PHB production. Biochem Eng J 10:157–173

    CAS  Article  Google Scholar 

  • US Environmental Protection Agency. Methane: sources and emissions. http://www.epa.gov/outreach/sources.html. Accessed April21, 2011

  • Ueda S, Matsumoto S, Takagi A, Yamane T (1992) Synthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from methanol and n-amyl alkohol by methylotrophic bacteria Paraccocus denitrificans and Methylobacterium extorquens. Appl Environ Microbiol 58:3574–3579

    CAS  Google Scholar 

  • Van Dien SJ, Lidstrom ME (2002) Stiochimetric model for evaluating the methabolic capabilities of the facultative methylotroph Methylobacterium extorquens AM1, with application to reconstruction of C3 and C4 methabolism. Biotechnol Bioeng 78:296–312

    Article  CAS  Google Scholar 

  • Vandamme P, Coenye T (2004) Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol 54:2285–2289

    Article  Google Scholar 

  • Van-Thuoc D, Quillaguamán J, Mamo G, Mattiasson B (2008) Utilization of agricultural residues for poly(3-hydroxybutyrate) production by Halomonas boliviensis LC1. J Appl Microbiol 104:420–428

    CAS  Google Scholar 

  • Vecherskaya M, Dijkema C, Stams AJ (2001) Intracellular PHB conversion in a type II methanotroph studied by13CNMR. J Ind Microbiol Biotechnol 26:15–21

    CAS  Article  Google Scholar 

  • Vincenzini M, De Philippis R (1999) Polyhydroxyalkanoates. In: Chemicals from Microalgae, Cohen Z, London, Taylor and Francis, pp 292-352

  • Volova TG, Voĭnov NA (2004) Study of Ralstonia eutropha culture producing polyhydroxyalkanoates on products of coal processing. Prikl Biokhim Mikrobiol 40:296–300

    CAS  Google Scholar 

  • Volova TG, Kalacheva GS, Altukhova OV (2002) Autotrophic synthesis of polyhydroxyalkanoates by the bacteria Ralstonia eutropha in the presence of carbon monoxide. App Microbiol Biotechnol 58:675–678

    CAS  Article  Google Scholar 

  • Wang J, Yu HQ (2007) Biosynthesis of polyhydroxybutyrate and extracellular polymeric substances by Ralstonia eutropha ATCC 17699 in batch cultures. Appl Microbiol Biotechnol 75:871–878

    CAS  Article  Google Scholar 

  • Wendlandt KD, Jechorek M, Helm J, Stottmeister U (1998) Production of PHB with a high molecular mass from methane. Poly Degrad Stabil 59:191–194

    CAS  Article  Google Scholar 

  • Wendlandt KD, Jechorek M, Helm J, Stottmeister U (2001) Producing poly-3-hydroxybutyrate with a high molecular mass from methane. J Biotechnol 86:127–133

    CAS  Article  Google Scholar 

  • Wendlandt KD, Geyer W, Mirschel G, Al-HajHemidi F (2005) Possibilities for controlling a PHB accumulation process using various analytical methods. J Biotechnol 117:119–129

    CAS  Article  Google Scholar 

  • Wendlandt KD, Stottmeister U, Helm J, Soltmann B, Jechorek M, Beck M (2010) The potential of methane-oxidizing bacteria for applications in environmental biotechnology (review). Eng Life Sci 10:87–102

    CAS  Google Scholar 

  • Whittenbury R, Phillips KC, Wilkinson JF (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218

    CAS  Google Scholar 

  • Wise MG, McArthur JV, Shimkets LJ (1999) Methanotroph diversity in land fill soil: isolation of novel type I and type II methanotrophs whose presence was suggested by culture independent 16S ribosomal DNA analysis. Appl Environ Microbiol 65:4887–4897

    CAS  Google Scholar 

  • Wong HH, Lee SY (1998) Poly(3-hydroxybutyrate) production from whey by high density cultivation of recombinant Escherichia coli. Appl Microbiol Biotechnol 50:30–33

    CAS  Article  Google Scholar 

  • Wong AL, Chua H, Yu PH (2000) Microbial production of polyhydroxyalkanoates by bacteria isolated from oil wastes. App Biochem Biotechnol 84–86:843–857

    Article  Google Scholar 

  • Xin JY, Zhang YX, Zhang S, Xia CG, Li SB (2007) Methanol production from CO2 by resting cells of the methanotrophic bacterium Methylosinus trichosporium IMV3011. J Basic Microbiol 47:426–435

    CAS  Article  Google Scholar 

  • Xin J, Zhang Y, Dong J, Song H, Xia C (2011) An experimental study on molecular weight of polyhydroxybutyrate (PHB) accumulated in Methylosinus trichosporium IMV 3011. Afr J Biotechnol 10:7078–7087

    CAS  Article  Google Scholar 

  • Yamane T (1993) Yield of poly-D-3-hydroxybutyrate from various, carbon sources: a theoretical study. Biotechnol Bioeng 41:165–170

    CAS  Article  Google Scholar 

  • Yamane T, Chen XF, Ueda S (1996a) Growth associated production of poly(3-hydroxyvalerate) from n-pentanol by a methylotrophic bacterium. Paracoccus denitrificans. Appl Environ Microbiol 62:380–384

    CAS  Google Scholar 

  • Yamane, Fukunaga M, Dee YW (1996b) Increase PHB production by high-cell-density fed-batch culture of Alcaligunes latus, a growth associated PHB producer. Biotechnol Bioeng 50:197–202

    CAS  Article  Google Scholar 

  • Yan S, Tyagi RD, Surampalli RY (2006) Polyhydroxyalkanoates (PHA) production using wastewater as carbon source and activated sludge as microorganisms. Water Sci Technol 53:175–180

    CAS  Google Scholar 

  • Yezza A, Fournier D, Halasz A, Hawari J (2006) Production of polyhydroxyalkanoates from methanol by a new methylotrophic bacterium Methylobacterium sp. GW2. Appl Microbiol Biot 73:211–218

    CAS  Article  Google Scholar 

  • Yoo S, Kim WS (1994) Cybernetic model for synthesis of poly-β-hydroxybutyric acid in Alcaligenes etrophus. Biotechnol Bioeng 43:1043–1051

    CAS  Article  Google Scholar 

  • Zahn JA, DiSpirito AA (1996) Membrane-associated methane monooxygenase from M. capsulatus (Bath). J Bacteriol 178:1018–1029

    CAS  Google Scholar 

  • Zhang Y, Xin J, Chen L, Song H, Xia C (2008) Biosynthesis of poly-3-hydroxybutyrate with a high molecular weight by methanotroph from methane and methanol. J Natural Gas Chem 17:103–109

    Article  Google Scholar 

  • Zhao S, Fan C, Hu X, Chen J, Feng H (1993) The microbial production of polyhydroxybutyrate from methanol. Appl Biochem Biotechnol 39(40):191–199

    Article  Google Scholar 

  • Zinn M, Witholt B, Egli T (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev 53:5–21

    CAS  Article  Google Scholar 

  • Zuniga C, Morales M, Le Borgne S, Revah S (2011) Production of poly-β-hydroxybutyrate (PHB) by Methylobacterium organophilum isolated from a methanotrophic consortium in a two-phase partition bioreactor. J Hazard Mater 190:876–882

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kianoush Khosravi-Darani.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Khosravi-Darani, K., Mokhtari, ZB., Amai, T. et al. Microbial production of poly(hydroxybutyrate) from C1 carbon sources. Appl Microbiol Biotechnol 97, 1407–1424 (2013). https://doi.org/10.1007/s00253-012-4649-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4649-0

Keywords

  • Polyhydroxybutyrate
  • C1 carbon sources
  • Methanol
  • Methane
  • CO2