Skip to main content

Advertisement

Log in

A simple and effective strategy for solving the problem of inclusion bodies in recombinant protein technology: His-tag deletions enhance soluble expression

  • Methods and protocols
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The formation of inclusion bodies (IBs) in recombinant protein biotechnology has become one of the most frequent undesirable occurrences in both research and industrial applications. So far, the pET System is the most powerful system developed for the production of recombinant proteins when Escherichia coli is used as the microbial cell factory. Also, using fusion tags to facilitate detection and purification of the target protein is a commonly used tactic. However, there is still a large fraction of proteins that cannot be produced in E. coli in a soluble (and hence functional) form. Intensive research efforts have tried to address this issue, and numerous parameters have been modulated to avoid the formation of inclusion bodies. However, hardly anyone has noticed that adding fusion tags to the recombinant protein to facilitate purification is a key factor that affects the formation of inclusion bodies. To test this idea, the industrial biocatalysts uridine phosphorylase from Aeropyrum pernix K1 and (+)-γ-lactamase and (−)-γ-lactamase from Bradyrhizobium japonicum USDA 6 were expressed in E. coli by using the pET System and then examined. We found that using a histidine tag as a fusion partner for protein expression did affect the formation of inclusion bodies in these examples, suggesting that removing the fusion tag can promote the solubility of heterologous proteins. The production of soluble and highly active uridine phosphorylase, (+)-γ-lactamase, and (−)-γ-lactamase in our results shows that the traditional process needs to be reconsidered. Accordingly, a simple and efficient structure-based strategy for the production of valuable soluble recombinant proteins in E. coli is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Braun P, Hu Y, Shen B, Halleck A, Koundinya M, Harlow E, LaBaer J (2002) Proteome-scale purification of human proteins from bacteria. P Natl Acad Sci 99(5):2654–2659. doi:10.1073/pnas.042684199

    Article  CAS  Google Scholar 

  • Burgess RR, Richard RB, Murray PD (2009) Refolding solubilized inclusion body proteins. In: Methods of enzymology. Academic, Salt Lake. Chapter 17, vol 463, pp 259–282

  • Carrió MM, Villaverde A (2003) Role of molecular chaperones in inclusion body formation. FEBS Lett 537(1–3):215–221

    Article  Google Scholar 

  • Carrió MM, Cubarsi R, Villaverde A (2000) Fine architecture of bacterial inclusion bodies. FEBS Lett 471(1):7–11

    Article  Google Scholar 

  • Coler RN, Dillon DC, Skeiky YAW, Kahn M, Orme IM, Lobet Y, Reed SG, Alderson MR (2009) Identification of Mycobacterium tuberculosis vaccine candidates using human CD4+ T-cells expression cloning. Vaccine 27(2):223–233

    Article  CAS  Google Scholar 

  • Côté G, Skory C (2011) Cloning, expression, and characterization of an insoluble glucan-producing glucansucrase from Leuconostoc mesenteroides NRRL B-1118. Appl Microbiol Biot 93(6):2387–2394. doi:10.1007/s00253-011-3562-2

    Article  Google Scholar 

  • De Bernardez CE (1998) Refolding of recombinant proteins. Curr Opin Biotech 9(2):157–163

    Article  Google Scholar 

  • de Groot NS, Ventura S (2006) Effect of temperature on protein quality in bacterial inclusion bodies. FEBS Lett 580(27):6471–6476

    Article  Google Scholar 

  • de Groot NS, Espargaró A, More M, Ventura S (2008) Studies on bacterial inclusion bodies. Future Microbiol 3(4):423–435. doi:10.2217/17460913.3.4.423

    Article  Google Scholar 

  • Dolatabadian A, Sanavy SAMM, Ghanati F, Gresshoff PM (2012) Morphological and physiological response of soybean treated with the microsymbiont Bradyrhizobium japonicum pre-incubated with genistein. S Afr J Bot 79:9–18

    Article  Google Scholar 

  • Fischer B, Sumner I, Goodenough P (1993) Isolation, renaturation, and formation of disulfide bonds of eukaryotic proteins expressed in Escherichia coli as inclusion bodies. Biotechnol Bioeng 41(1):3–13. doi:10.1002/bit.260410103

    Article  CAS  Google Scholar 

  • García-Fruitós E, Vázquez E, Díez-Gil C, Corchero JL, Seras-Franzoso J, Ratera I, Veciana J, Villaverde (2011) A bacterial inclusion bodies: making gold from waste. Trends Biotechnol 30(2):65–70

    Article  Google Scholar 

  • Gatti-Lafranconi P, Natalello A, Ami D, Doglia SM, Lotti M (2011) Concepts and tools to exploit the potential of bacterial inclusion bodies in protein science and biotechnology. FEBS J 278(14):2408–2418. doi:10.1111/j.1742-4658.2011.08163.x

    Article  CAS  Google Scholar 

  • Griswold KE, Mahmood NA, Iverson BL, Georgiou G (2003) Effects of codon usage versus putative 5-mRNA structure on the expression of Fusarium solani cutinase in the Escherichia coli cytoplasm. Protein Expres Purif 27(1):134–142

    Article  CAS  Google Scholar 

  • Haacke A, Fendrich G, Ramage P, Geiser M (2009) Chaperone over-expression in Escherichia coli: apparent increased yields of soluble recombinant protein kinases are due mainly to soluble aggregates. Protein Expres Purif 64(2):185–193

    Article  CAS  Google Scholar 

  • Hannig G, Makrides SC (1998) Strategies for optimizing heterologous protein expression in Escherichia coli. Trends Biotechnol 16(2):54–60

    Article  CAS  Google Scholar 

  • Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381(6583):571–580

    Article  CAS  Google Scholar 

  • Hochuli E, Döbeli H, Schacher A (1987) New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J Chromatogr A 411:177–184

    Article  CAS  Google Scholar 

  • Horchani H, Ouertani S, Gargouri Y, Sayari A (2009) The N-terminal His-tag and the recombination process affect the biochemical properties of Staphylococcus aureus lipase produced in Escherichia coli. J Mol Catal B-Enzym 61(3–4):194–201

    Article  CAS  Google Scholar 

  • Judd AK, Schneider M, Sadowsky MJ, de Bruijn FJ (1993) Use of repetitive sequences and the polymerase chain reaction technique to classify genetically related Bradyrhizobium japonicum serocluster 123 strains. Appl Environ Microb 59(6):1702–1708

    CAS  Google Scholar 

  • Kawarabayasi Y, Hino Y, Horikawa H, Yamazaki S, Haikawa Y, Jin-no K, Takahashi M, Sekine M, S-i B, Ankai A, Kosugi H, Hosoyama A, Fukui S, Nagai Y, Nishijima K, Nakazawa H, Takamiya M, Masuda S, Funahashi T, Tanaka T, Kudoh Y, Yamazaki J, Kushida N, Oguchi A, K-i A, Kubota K, Nakamura Y, Nomura N, Sako Y, Kikuchi H (1999) Complete Genome Sequence of an Aerobic Hyper-thermophilic Crenarchaeon, Aeropyrum pernix K1. DNA Res 6(2):83–101. doi:10.1093/dnares/6.2.83

    Article  CAS  Google Scholar 

  • Kirschner A, Altenbuchner J, Bornscheuer U (2007) Cloning, expression, and characterization of a Baeyer–Villiger monooxygenase from Pseudomonas fluorescens DSM 50106 in E. coli. Appl Microbiol Biot 73(5):1065–1072. doi:10.1007/s00253-006-0556-6

    Article  CAS  Google Scholar 

  • Li Y, Yang G, Huang X, Ye B, Liu M, Lin Z, Li C, Cao Z-a (2009) Recombinant Glutamine Synthetase (GS) from C. glutamicum Existed as Both Hexamers & Dedocamers and C-terminal His-tag Enhanced Inclusion Bodies Formation in E. coli. Appl Microbiol Biot 159(3):614–622. doi:10.1007/s12010-008-8493-8

    CAS  Google Scholar 

  • Lilie H, Schwarz E, Rudolph R (1998) Advances in refolding of proteins produced in E. coli. Curr Opin. Biotech 9(5):497–501

    CAS  Google Scholar 

  • Masip L, Pan JL, Haldar S, Penner-Hahn JE, DeLisa MP, Georgiou G, Bardwell JCA, Collet J-F (2004) An engineered pathway for the formation of protein disulfide bonds. Science 303(5661):1185–1189. doi:10.1126/science.1092612

    Article  CAS  Google Scholar 

  • Ohtaki A, Murata K, Sato Y, Noguchi K, Miyatake H, Dohmae N, Yamada K, Yohda M, Odaka M (2010) Structure and characterization of amidase from Rhodococcus sp. N-771: Insight into the molecular mechanism of substrate recognition. BBA-Proteins Proteom 1804(1):184–192

    Article  CAS  Google Scholar 

  • Park SH, Casagrande F, Chu M, Maier K, Kiefer H, Opella SJ (2011) Optimization of purification and refolding of the human chemokine receptor CXCR1 improves the stability of proteoliposomes for structure determination. BBA-Biomembranes 1818(3):584–591

    Article  Google Scholar 

  • Quintana-Castro R, Díaz P, Valerio-Alfaro G, García H, Oliart-Ros R (2009) Gene cloning, expression, and characterization of the Geobacillus thermoleovorans CCR11 thermoalkaliphilic lipase. Mol Biotechnol 42(1):75–83. doi:10.1007/s12033-008-9136-6

    Article  CAS  Google Scholar 

  • Šali A, Potterton L, Yuan F, van Vlijmen H, Karplus M (1995) Evaluation of comparative protein modeling by MODELLER. Proteins 23(3):318–326. doi:10.1002/prot.340230306

    Article  Google Scholar 

  • Schügerl K, Hubbuch J (2005) Integrated bioprocesses. Curr Opin Microbiol 8(3):294–300

    Article  Google Scholar 

  • Shuo-shuo C, Xue-zheng L, Ji-hong S (2011) Effects of co-expression of molecular chaperones on heterologous soluble expression of the cold-active lipase Lip-948. Protein Expres Purif 77(2):166–172

    Article  Google Scholar 

  • Singh SM, Sharma A, Upadhyay AK, Singh A, Garg LC, Panda AK (2011) Solubilization of inclusion body proteins using n-propanol and its refolding into bioactive form. Protein Expres Purif 81(1):75–82

    Google Scholar 

  • Singh SM, Panda AK (2005) Solubilization and refolding of bacterial inclusion body proteins. J Biosci Bioeng 99(4):303–310

    Article  CAS  Google Scholar 

  • Sørensen HP, Mortensen KK (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 115(2):113–128

    Article  Google Scholar 

  • Terpe K (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biot 60(5):523–533. doi:10.1007/s00253-002-1158-6

    CAS  Google Scholar 

  • Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biot 72(2):211–222. doi:10.1007/s00253-006-0465-8

    Article  CAS  Google Scholar 

  • Tsumoto K, Ejima D, Kumagai I, Arakawa T (2003) Practical considerations in refolding proteins from inclusion bodies. Protein Expres Purif 28(1):1–8

    Article  CAS  Google Scholar 

  • Wardenga R, Hollmann F, Thum O, Bornscheuer U (2008) Functional expression of porcine aminoacylase 1 in E. coli using a codon optimized synthetic gene and molecular chaperones. Appl Microbiol Biot 81(4):721–729. doi:10.1007/s00253-008-1716-7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guojun Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, S., Gong, C., Ren, L. et al. A simple and effective strategy for solving the problem of inclusion bodies in recombinant protein technology: His-tag deletions enhance soluble expression. Appl Microbiol Biotechnol 97, 837–845 (2013). https://doi.org/10.1007/s00253-012-4630-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4630-y

Keywords