Skip to main content
Log in

Expression pattern of recombinant organophosphorus hydrolase from Flavobacterium sp. ATCC 27551 in Escherichia coli

Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Concerned with the influence of tagging system on the expression of heterogeneous protein in Escherichia coli, we attempted to express the organophosphorus hydrolase (OPH) of Flavobacterium sp. ATCC 27551 in E. coli. Recombinant OPH was overproduced successfully in E. coli when modified without the use of a tobacco etch virus (TEV) protease cleavage sequence. In addition, though there has never been a report on the extracellular secretion of recombinant OPH harboring native Tat signal peptides in E. coli, the produced protein was observed to be secreted extracellularly. Through the use of reverse transcriptional quantitative real-time PCR and comparison of the predicted folding rate, it was determined that OPH expression may be affected by the existence of a TEV protease cleavage sequence at the C-terminus during the process of translated protein folding, leading to the suppressed OPH activity. With the potential compatibility between native Tat signal peptides of OPH and E. coli Tat pathway secretion system, we report a successful expression of recombinant OPH harboring native Tat signal peptides in E. coli, for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Busso D, Kim R, Kim SH (2003) Expression of soluble recombinant proteins in a cell-free system using a 96-well format. J Biochem Biophys Meth 55:233–240

    Article  PubMed  CAS  Google Scholar 

  • Cha HJ, Wu CF, Valdes JJ, Rao G, Bentley WE (2000) Observations of green fluorescent protein as a fusion partner in genetically engineered Escherichia coli: monitoring protein expression and solubility. Biotechnol Bioeng 67:565–574

    Article  PubMed  CAS  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy Server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, New York, pp 571–607

    Chapter  Google Scholar 

  • Gorla P, Pandey JP, Parthasarathy S, Merrick M, Siddavattam D (2009) Organophosphate hydrolase in Brevundimonas diminuta is targeted to the periplasmic face of the inner membrane by the twin arginine translocation pathway. J Bacteriol 191:6292–6299

    Article  PubMed  CAS  Google Scholar 

  • Gromiha MM, Thangakani AM, Selvaraj S (2006) FOLD-RATE: prediction of protein folding rates from amino acid sequence. Nucl Acids Res 34:W70–W74

    Article  PubMed  CAS  Google Scholar 

  • Gu W, Zhou T, Wilke CO (2010) A universal trend of reduced mRNA stability near the translation-initiation site in prokaryotes and eukaryotes. PLoS Comput Biol 6:e1000664

    Article  PubMed  Google Scholar 

  • Kang DG, Lim GB, Cha HJ (2005) Functional periplasmic secretion of organophosphorous hydrolase using the twin-arginine translocation pathway in Escherichia coli. J Biotechnol 118:379–385

    Article  PubMed  CAS  Google Scholar 

  • Kang DG, Choi SS, Cha HJ (2006) Enhanced biodegradation of toxic organophosphate compounds using recombinant Escherichia coli with sec pathway-driven periplasmic secretion of organophosphorus hydrolase. Biotechnol Prog 22:406–410

    Article  PubMed  CAS  Google Scholar 

  • Kang DG, Li L, Ha JH, Choi SS, Cha HJ (2008) Efficient cell surface display of organophosphorous hydrolase using N-terminal domain of ice nucleation protein in Escherichia coli. Kor J Chem Eng 25:804–807

    Article  CAS  Google Scholar 

  • Kudla G, Murray AW, Tollervey D, Plotkin JB (2009) Coding-sequence determinants of gene expression in Escherichia coli. Science 324:255–258

    Article  PubMed  CAS  Google Scholar 

  • Kurz M, Cowieson NP, Robin G, Hume DA, Martin JL, Kobe B, Listwan P (2006) Incorporating a TEV cleavage site reduces the solubility of nine recombinant mouse proteins. Protein Expr Purif 50:68–73

    Article  PubMed  CAS  Google Scholar 

  • Kwak YY, Kim JE, Lee IJ, Kim JG, Rhee IK, Shin JH (2012) Biodegradation of tolclofos-methyl by extracellular secreted organophosphorus hydrolase in recombinant Escherichia coli. J Korean Soc Appl Biol Chem 55:377–384

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Li C, Zhu Y, Benz I, Schmidt MA, Chen W, Mulchandani A, Qiao C (2008) Presentation of functional organophosphorus hydrolase fusions on the surface of Escherichia coli by the AIDA-I autotransporter pathway. Biotechnol Bioeng 99:485–490

    Article  PubMed  CAS  Google Scholar 

  • Lin G, Wang Z, Xu D, Cheng J (2010) SeqRate: sequence-based protein folding type classification and rates prediction. BMC Bioinforma 11:S1

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \( {{2}^{{ - \Delta \Delta {{C}_{T}}}}} \) method. Methods 25:402–408

  • Mulbry WW, Karns JS (1989) Parathion hydrolase specified by the Flavobacterium opd gene: relationship between the gene and protein. J Bacteriol 171:6740–6746

    PubMed  CAS  Google Scholar 

  • Mulbry WW, Karns JS, Kearney PC, Nelson JO, McDaniel CS, Wild JR (1986) Identification of a plasmid-borne parathion hydrolase gene from Flavobacterium sp. by southern hybridization with opd from Pseudomonas diminuta. Appl Environ Microbiol 51:926–930

    PubMed  CAS  Google Scholar 

  • Mulchandani A, Kaneva I, Chen W (1999) Detoxification of organophosphate nerve agents by immobilized Escherichia coli with surface-expressed organophosphorus hydrolase. Biotechnol Bioeng 63:216–223

    Article  PubMed  CAS  Google Scholar 

  • Natale P, Brüser T, Driessen AJM (2008) Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane-distinct translocases and mechanisms. Biochimica Biophys Acta 1778:1735–1756

    Article  CAS  Google Scholar 

  • Pandey J, Gorla P, Manavathi B, Siddavattam D (2009) mRNA secondary structure modulates the translation of organophosphate hydrolase (OPH) in E. coli. Mol Biol Rep 36:449–454

    Article  PubMed  CAS  Google Scholar 

  • Richins RD, Kaneva I, Mulchandani A, Chen W (1997) Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase. Nat Biotechnol 15:984–987

    Article  PubMed  CAS  Google Scholar 

  • Sørensen HP, Mortensen KK (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 115:113–128

    Article  PubMed  Google Scholar 

  • Serdar CM, Murdock DC, Rohde MF (1989) Parathion hydrolase gene from Pseudomonas diminuta MG: subcloning, complete nucleotide sequence, and expression of the mature portion of the enzyme in Escherichia coli. Nat Biotechnol 7:1151–1155

    CAS  Google Scholar 

  • Serdar CM, Gibson DT, Munnecke DM, Lancaster JH (1982) Plasmid involvement in parathion hydrolysis by Pseudomonas diminuta. Appl Environ Microbiol 44:246–249

    PubMed  CAS  Google Scholar 

  • Sethunathan N, Yoshida T (1973) A Flavobacterium sp. that degrades diazinon and parathion. Can J Microbiol 19:873–875

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Song JN, Chou KC (2009) Prediction of protein folding rates from primary sequence by fusing multiple sequential features. J Biomed Sci Eng 2:135–207

    Google Scholar 

  • Shimazu M, Mulchandani A, Chen W (2001) Cell surface display of organophosphorus hydrolase using ice nucleation protein. Biotechnol Prog 17:76–80

    Article  PubMed  CAS  Google Scholar 

  • Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30:428–471

    Article  PubMed  CAS  Google Scholar 

  • Voulhoux R, Ball G, Ize B, Vasil ML, Lazdunski A, Wu L-F, Filloux A (2001) Involvement of the twin-arginine translocation system in protein secretion via the type II pathway. EMBO J 20:6735–6741

    Article  PubMed  CAS  Google Scholar 

  • Woestenenk EA, Hammarström M, van den Berg S, Härd T, Berglund H (2004) His tag effect on solubility of human proteins produced in Escherichia coli: a comparison between four expression vectors. J Struct Funct Genom 5:217–229

    Article  CAS  Google Scholar 

  • Wu CF, Cha HJ, Rao G, Valdes JJ, Bentley WE (2000) A green fluorescent protein fusion strategy for monitoring the expression, cellular location, and separation of biologically active organophosphorus hydrolase. Appl Microbiol Biotechnol 54:78–83

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Zhu Y, Yang J, Liu Z, Qiao C, Mulchandani A, Chen W (2008) Development of an autofluorescent whole-cell biocatalyst by displaying dual functional moieties on Escherichia coli cell surfaces and construction of a coculture with organophosphate-mineralizing activity. Appl Environ Microbiol 74:7733–7739

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Technology Development Program for Bio-industry, Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Ho Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwak, Y., Rhee, IK. & Shin, JH. Expression pattern of recombinant organophosphorus hydrolase from Flavobacterium sp. ATCC 27551 in Escherichia coli . Appl Microbiol Biotechnol 97, 8097–8105 (2013). https://doi.org/10.1007/s00253-012-4626-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4626-7

Keywords

Navigation