Skip to main content

Advertisement

Log in

Metabolic characteristics of the species Variovorax paradoxus

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This review outlines information about the Gram-negative, aerobic bacterium Variovorax paradoxus. The genomes of these species have G+C contents of 66.5–69.4 mol%, and the cells form yellow colonies. Some strains of V. paradoxus are facultative lithoautotrophic, others are chemoorganotrophic. Many of them are associated with important catabolic processes including the degradation of toxic and/or complex chemical compounds. The degradation pathways or other skills related to the following compounds, respectively, are described in this review: sulfolane, 3-sulfolene, 2-mercaptosuccinic acid, 3,3′-thiodipropionic acid, aromatic sulfonates, alkanesulfonates, amino acids and other sulfur sources, polychlorinated biphenyls, dimethyl terephthalate, linuron, 2,4-dinitrotoluene, homovanillate, veratraldehyde, 2,4-dichlorophenoxyacetic acid, anthracene, poly(3-hydroxybutyrate), chitin, cellulose, humic acids, metal–EDTA complexes, yttrium, rare earth elements, As(III), trichloroethylene, capsaicin, 3-nitrotyrosine, acyl-homoserine lactones, 1-aminocyclopropane-1-carboxylate, methyl tert-butyl ether, geosmin, and 2-methylisoborneol. Strains of V. paradoxus are also engaged in mutually beneficial interactions with other plant and bacterial species in various ecosystems. This species comprises probably promising strains for bioremediation and other biotechnical applications. Lately, the complete genomes of strains S110 and EPS have been sequenced for further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abraham WR, Nogales B, Golyshin PN, Pieper DH, Timmis KN (2002) Polychlorinated biphenyl-degrading microbial communities in soils and sediments. Curr Opin Microbiol 5:246–253

    Article  CAS  Google Scholar 

  • Allison N, Turner JE, Wait R (1995) Degradation of homovanillate by a strain of Variovorax paradoxus via ring hydroxylation. FEMS Microbiol Lett 134:213–219

    Article  CAS  Google Scholar 

  • Appel RB, Tomlinson IA, Hill I (1995) New reagents for the reductive quenching of ozonolysis reactions. Synth Commun 25:3589–3595

    Article  Google Scholar 

  • Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz KJ, Stepanok VV (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:642–652

    Article  CAS  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern). Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol 181:413–423

    Article  CAS  Google Scholar 

  • Bers K, Sniegowski K, Albers P, Breugelmans P, Hendrickx L, de Mot R, Springael D (2011a) A molecular toolbox to estimate the number and diversity of Variovorax in the environment: application in soils treated with the phenylurea herbicide linuron. FEMS Microbiol Ecol 76:14–25

    Article  CAS  Google Scholar 

  • Bers K, Leroy B, Breugelmans P, Albers P, Lavigne R, Sørensen SR, Aamand J, de Mot R, Wattiez R, Springael D (2011b) A novel hydrolase identified by genomic–proteomic analysis of phenylurea herbicide mineralization by Variovorax sp. strain SRS16. Appl Environ Microbiol 77:8754–8764

    Article  CAS  Google Scholar 

  • Breugelmans P, Leroy B, Bers K, Dejonghe W, Wattiez R, Rd M, Springael D (2010) Proteomic study of linuron and 3,4-dichloroaniline degradation by Variovorax sp. WDL1: evidence for the involvement of an aniline dioxygenase-related multicomponent protein. Res Microbiol 161:208–218

    Article  CAS  Google Scholar 

  • Bruland N, Bathe S, Willems A, Steinbüchel A (2009a) Pseudorhodoferax soli gen. nov., sp. nov. and Pseudorhodoferax caeni sp. nov., two members of the class Betaproteobacteria belonging to the family Comamonadaceae. Int J Syst Evol Microbiol 59:2702–2707

    Article  CAS  Google Scholar 

  • Bruland N, Wübbeler JH, Steinbüchel A (2009b) 3-Mercaptopropionate dioxygenase, a cysteine dioxygenase homologue, catalyzes the initial step of 3-mercaptopropionate catabolism in the 3,3-thiodipropionic acid-degrading bacterium Variovorax paradoxus. J Biol Chem 284:660–672

    Article  CAS  Google Scholar 

  • Burgess EA, Unrine JM, Mills GL, Romanek CS, Wiegel J (2012) Comparative geochemical and microbiological characterization of two thermal pools in the Uzon Caldera, Kamchatka, Russia. Microb Ecol 63:471–489

    Article  Google Scholar 

  • Carbajal-Rodríguez I, Stöveken N, Satola B, Wübbeler JH, Steinbüchel A (2011) Aerobic degradation of mercaptosuccinate by the Gram-negative bacterium Variovorax paradoxus strain B4. J Bacteriol 193:527–539

    Article  CAS  Google Scholar 

  • Caux PY, Kent RA, Fan GT, Grande C (1998) Canadian water quality guidelines for linuron. Environ Toxicol Water Qual 13:1–41

    Article  CAS  Google Scholar 

  • Coenye T, Vancanneyt M, Cnockaert MC, Falsen E, Swings J, Vandamme P (2003) Kerstersia gyiorum gen. nov., sp. nov., a novel Alcaligenes faecalis-like organism isolated from human clinical samples, and reclassification of Alcaligenes denitrificans Rüger and Tan 1983 as Achromobacter denitrificans comb. nov. Int J Syst Evol Microbiol 53:1825–1831

    Article  CAS  Google Scholar 

  • Collin G, Höke H, Talbiersky J (2006) Anthracene. Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim. doi:10.1002/14356007.a02_343

    Google Scholar 

  • Dave MP, Patel JM, Langalia NA, Thaker KA (1984) Synthesis and antitubercular activity of some 2-aryl-3-[4-chlorobenzamido]-5-substituted-4-thiazolidinones. J Indian Chem Soc 61:891–892

    CAS  Google Scholar 

  • Davis DH, Doudoroff M, Stanier RY, Mandel M (1969) Proposal to reject the genus Hydrogenomonas: taxonomic implications. Int J Syst Bacteriol 19:375–390

    Article  Google Scholar 

  • Dejonghe W, Berteloot E, Goris J, Boon N, Crul K, Maertens S, Höfte M, Vos PD, Verstraete W, Top EM (2003) Synergistic degradation of linuron by a bacterial consortium and isolation of a single linuron-degrading Variovorax strain. Appl Environ Microbiol 69:1532–1541

    Article  CAS  Google Scholar 

  • Delafield FP, Doudoroff M, Palleroni NJ, Lusty CJ, Contopoulou CR (1965) Decomposition of poly-β-hydroxybutyrate by pseudomonads. J Bacteriol 90:1455–1466

    CAS  Google Scholar 

  • Ding L, Yokota A (2004) Proposals of Curvibacter gracilis gen. nov., sp. nov. and Herbaspirillum putei sp. nov. for bacterial strains isolated from well water and reclassification of [Pseudomonas] huttiensis, [Pseudomonas] lanceolata, [Aquaspirillum] delicatum and [Aquaspirillum] autotrophicum as Herbaspirillum huttiense comb. nov., Curvibacter lanceolatus comb. nov., Curvibacter delicatus comb. nov. and Herbaspirillum autotrophicum comb. nov. Int J Syst Evol Microbiol 54:2223–2230

    Article  CAS  Google Scholar 

  • Dodd IC, Jiang F, Teijeiro RG, Belimov AA, Hartung W (2009) The rhizosphere bacterium Variovorax paradoxus 5C-2 containing ACC deaminase does not increase systemic ABA signaling in maize (Zea mays L.). Plant Signal Behav 4:519–521

    Article  CAS  Google Scholar 

  • Don RH, Pemberton JM (1981) Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J Bacteriol 145:681–686

    CAS  Google Scholar 

  • Don RH, Weightman AJ, Knackmuss HJ, Timmis KN (1985) Transposon mutagenesis and cloning analysis of the pathways for degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate in Alcaligenes eutrophus JMP134(pJP4). J Bacteriol 161:85–90

    CAS  Google Scholar 

  • Egli T (1988) (An)aerobic breakdown of chelating agents used in household detergents. Microbiol Sci 5:36–41

    CAS  Google Scholar 

  • Fahlbusch K-G, Hammerschmidt F-J, Panten J, Pickenhagen W, Schatkowski D, Bauer K, Garbe D, Surburg H (2003) Flavors and fragrances. Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim. doi:10.1002/14356007.a11_141

    Google Scholar 

  • Fehling E, Klein E, Vosmann K, Bergander K, Weber N (2008) Linear copolymeric poly(thia-alkanedioates) by lipase-catalyzed esterification and transesterification of 3,3′-thiodipropionic acid and its dimethyl ester with α, ω-alkandiols. Biotechnol Bioeng 99:1074–1084

    Article  CAS  Google Scholar 

  • Filip Z, Bielek P (2002) Susceptibility of humic acids from soils with various contents of metals to microbial utilization and transformation. Biol Fertil Soils 36:426–433

    Article  CAS  Google Scholar 

  • Fisher PR, Appleton J, Pemberton JM (1978) Isolation and characterisation of the pesticide-degrading plasmid pJP1 from Alcaligenes paradoxus. J Bacteriol 135:798–804

    CAS  Google Scholar 

  • Fitzgerald KJ, Richardson JA (1966) How gas composition affects treating process selection. Hydrocarb Process 45:127–130

    Google Scholar 

  • Flagan SF, Leadbetter JR (2006) Utilization of capsaicin and vanillylamine as growth substrates by Capsicum (hot pepper)-associated bacteria. Environ Microbiol 8:560–565

    Article  CAS  Google Scholar 

  • Folsom BR, Chapman PJ, Pritchard PH (1990) Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrates. Appl Environ Microbiol 56:1279–1285

    CAS  Google Scholar 

  • Futamata H, Harayama S, Watanabe K (2001a) Group-specific monitoring of phenol hydroxylase genes for a functional assessment of phenol-stimulated trichloroethylene bioremediation. Appl Environ Microbiol 67:4671–4677

    Article  CAS  Google Scholar 

  • Futamata H, Harayama S, Watanabe K (2001b) Diversity in kinetics of trichloroethylene-degrading activities exhibited by phenol-degrading bacteria. Appl Microbiol Biotechnol 55:248–253

    Article  CAS  Google Scholar 

  • Futamata H, Nagano Y, Watanabe K, Hiraishi A (2005) Unique kinetic properties of phenol-degrading Variovorax strains responsible for efficient trichloroethylene degradation in a chemostat enrichment culture. Appl Environ Microbiol 71:904–911

    Article  CAS  Google Scholar 

  • Gomila M, Pinhassi J, Falsen E, Moore ERB, Lalucat J (2010) Kinneretia asaccharophila gen. nov., sp. nov., isolated from a freshwater lake, a member of the Rubrivivax branch of the family Comamonadaceae. Int J Syst Evol Microbiol 60:809–814

    Article  CAS  Google Scholar 

  • Grabovich M, Gavrish E, Kuever J, Lysenko AM, Podkopaeva D, Dubinina G (2006) Proposal of Giesbergeria voronezhensis gen. nov., sp. nov. and G. kuznetsovii sp. nov. and reclassification of [Aquaspirillum] anulus, [A.] sinuosum and [A.] giesbergeri as Giesbergeria anulus comb. nov., G. sinuosa comb. nov. and G. giesbergeri comb. nov., and [Aquaspirillum] metamorphum and [A.] psychrophilum as Simplicispira metamorpha gen. nov., comb. nov. and S. psychrophila comb. nov. Int J Syst Evol Microbiol 56:569–576

    Article  CAS  Google Scholar 

  • Gray KA, Pogrebinsky OS, Mrachko T, Xi L, Monticello DJ, Squires CH (1996) Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat Biotechnol 14:1705–1709

    Article  CAS  Google Scholar 

  • Greene EA, Beatty PH, Fedorak PM (2000) Sulfolane degradation by mixed cultures and a bacterial isolate identified as a Variovorax sp. Arch Microbiol 174:111–119

    Article  CAS  Google Scholar 

  • Gross MJ, Logan BE (1995) Influence of different chemical treatments on transport of Alcaligenes paradoxus in porous media. Appl Environ Microbiol 61:1750–1756

    CAS  Google Scholar 

  • Guttman L, van Rijn J (2012) Isolation of bacteria capable of growth with 2-methylisoborneol and geosmin as the sole carbon and energy sources. Appl Environ Microbiol 78:363–370

    Article  CAS  Google Scholar 

  • Hahn MW, Kasalick V, Jezbera J, Brandt U, Jezberova J, Simek K (2010) Limnohabitans curvus gen. nov., sp. nov., a planctonic bacterium isolated from a freshwater lake. Int J Syst Evol Microbiol 60:1358–1365

    Article  CAS  Google Scholar 

  • Han JI, Choi HK, Lee SW, Orwin PM, Kim J, LaRoe SL, Kim T, O'Neil J, Leadbetter JR, Lee SY, Hur CG, Spain JC, Ovchinnikova G, Goodwin L, Cliff H (2011a) Complete genome sequence of the metabolically versatile plant growth-promoting endophyte Variovorax paradoxus S110. J Bacteriol 193:1183–1190

    Article  CAS  Google Scholar 

  • Han J, Song Y, Liu Z, Hu Y (2011b) Culturable bacterial community analysis in the root domains of two varieties of tree peony (Paeonia ostii). FEMS Microbiol Lett 322:15–24

    Article  CAS  Google Scholar 

  • Im WT, Liu QM, Lee GJ, Lee ST, Yi TH (2010) Variovorax ginsengisoli sp. nov., a denitrifying bacterium isolated from soil of a ginseng field in South Korea. Int J Syst Evol Microbiol 60:1565–1569

    Article  CAS  Google Scholar 

  • Jamieson WD, Pehl MJ, Gregory GA, Orwin PM (2009) Coordinated surface activities in Variovorax paradoxus EPS. BMC Microbiol 9:124

    Article  CAS  Google Scholar 

  • Jin L, Kim KK, Ahn CY, Oh HM (2012) Variovorax defluvii sp. nov., isolated from sewage flowing into 3 River Geumho in South Korea. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.035295-0

  • Jones MD, Singleton DR, Sun W, Aitken MD (2011) Multiple DNA extractions coupled with stable-isotope probing of anthracene-degrading bacteria in contaminated soil. Appl Environ Microbiol 77:2984–2991

    Article  CAS  Google Scholar 

  • Jüttner F, Watson SB (2007) Biochemical and ecological control of geosmin and 2-methylisoborneol in source waters. Appl Environ Microbiol 73:4395–4406

    Article  CAS  Google Scholar 

  • Ka JO, Tiedje JM (1994) Integration and excision of a 2,4-dichlorophenoxyacetic acid-degradative plasmid in Alcaligenes paradoxus and evidence of its natural intergeneric transfer. J Bacteriol 176:5284–5289

    CAS  Google Scholar 

  • Kamagata Y, Fulthorpe RR, Tamura K, Takami H, Forney LJ, Tiedje JM (1997) Pristine environments harbor a new group of oligotrophic 2,4-dichlorophenoxyacetic acid-degrading bacteria. Appl Environ Microbiol 63:2266–2272

    CAS  Google Scholar 

  • Kamijo M, Suzuki T, Kawai K, Murase H (1998) Accumulation of yttrium by Variovorax paradoxus. J Ferment Bioeng 86:564–568

    Article  CAS  Google Scholar 

  • Kämpfer P, Thummes K, Chu HI, Tan CC, Arun AB, Chen WM, Lai WA, Shen FT, Rekha PD, Young CC (2008) Pseudoacidovorax intermedius gen. nov., sp. nov., a novel nitrogen-fixing betaproteobacterium isolated from soil. Int J Syst Evol Microbiol 58:491–495

    Article  CAS  Google Scholar 

  • Kanzler BEM, Pfannes KR, Vogl K, Overmann J (2005) Molecular characterization of the nonphotosynthetic partner bacterium in the consortium “Chlorochromatium aggregatum”. Appl Environ Microbiol 71:7434–7441

    Article  CAS  Google Scholar 

  • Kern HW, Kirk TK (1987) Influence of molecular size and ligninase pretreatment on degradation of lignins by Xanthomonas sp. strain 99. Appl Environ Microbiol 53:2242–2246

    CAS  Google Scholar 

  • Kim BY, Weon HY, Yoo SH, Lee SY, Kwon SW, Go SJ, Stackebrandt E (2006) Variovorax soli sp. nov., isolated from greenhouse soil. Int J Syst Evol Microbiol 56:2899–2901

    Article  CAS  Google Scholar 

  • Kirst H, Sides GD (1989) New direction for macrolide antibiotics: structural modifications and in vitro activity. Antimicrob Agents Chemother 33:1413–1418

    Article  CAS  Google Scholar 

  • Krieg L, Ansorge-Schumacher MB, Kula MR (2002) Screening for amidases: isolation and characterisation of a novel D-amidase from Variovorax paradoxus. Adv Synth Catal 344:965–973

    Article  CAS  Google Scholar 

  • Leadbetter JR, Greenberg EP (2000) Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J Bacteriol 182:6921–6926

    Article  CAS  Google Scholar 

  • Lee J, Lee CS, Hugunin KM, Maute CJ, Dysko RC (2010) Bacteria from drinking water supply and their fate in gastrointestinal tracts of germ-free mice: a phylogenetic comparison study. Water Res 44:5050–5058

    Article  CAS  Google Scholar 

  • Leydet A, Jeantet-Segonds C, Bouchitte C, Boyer B, Roque JP, Witvrouw M, Este J, Snoeck R, Andrei G, DeClercq E (1997) Polyanion inhibitors of human immunodeficiency virus and other viruses. 6. Micelle-like anti-HIV polyanionic compounds based on a carbohydrate core. J Med Chem 40:350–356

    Article  CAS  Google Scholar 

  • Lin PH, Su SC, Tsai YC, Lee CY (2002) Identification and characterisation of a new gene from Variovorax paradoxus Iso1 encoding N-acyl-D-amino acid amidohydrolase responsible for D-amino acid production. Eur J Biochem 269:4868–4878

    Article  CAS  Google Scholar 

  • Lütke-Eversloh T, Steinbüchel A (2003) Novel precursor substrates for polythioester (PTE) and limits of polythioester biosynthesis in Ralstonia eutropha. FEMS Microbiol Lett 221:191–196

    Article  CAS  Google Scholar 

  • Macur RE, Jackson CR, Botero LM, McDermott TR, Inskeep WP (2004) Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil. Environ Sci Technol 38:104–111

    Article  CAS  Google Scholar 

  • Mergaert J, Webb A, Anderson C, Wouters A, Swings J (1993) Microbial degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in soils. Appl Environ Microbiol 59:3233–3238

    CAS  Google Scholar 

  • Mergaert J, Ruffieux K, Bourban C, Storms V, Wagemans W, Wintermantel E, Swings J (2000) In vitro biodegradation of polyester-based plastic materials by selected bacterial cultures. J Polym Environ 8:17–27

    Article  Google Scholar 

  • Miwa H, Ahmed I, Yoon J, Yokota A, Fujiwara T (2008) Variovorax boronicumulans sp. nov., a boron-accumulating bacterium isolated from soil. Int J Syst Evol Microbiol 58:286–289

    Article  CAS  Google Scholar 

  • Mohan K, Khanna S (1993) Degradation of veratraldehyde by Alcaligenes paradoxus. FEMS Microbiol Lett 108:361–366

    Article  CAS  Google Scholar 

  • Nelson MJK, Montgomery SO, Mahaffey WR, Pritchard PH (1987) Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway. Appl Environ Microbiol 53:949–954

    CAS  Google Scholar 

  • Nelson MJK, Montgomery SO, Pritchard PH (1988) Trichloroethylene metabolism by microorganisms that degrade aromatic compounds. Appl Environ Microbiol 54:604–606

    CAS  Google Scholar 

  • Nishino SF, Spain JC (2006) Biodegradation of 3-nitrotyrosine by Burkholderia sp. strain JS165 and Variovorax paradoxus JS171. Appl Environ Microbiol 72:1040–1044

    Article  CAS  Google Scholar 

  • Nishino SF, Paoli GC, Spain JC (2000) Aerobic degradation of dinitrotoluenes and pathway for bacterial degradation of 2,6-dinitrotoluene. Appl Environ Microbiol 66:2139–2147

    Article  CAS  Google Scholar 

  • Nogales B, Moore ERB, Abraham WR, Timmis KN (1999) Identification of the metabolically active members of a bacterial community in a polychlorinated biphenyl-polluted moorland soil. Environ Microbiol 1:199–212

    Article  CAS  Google Scholar 

  • Nomiya K, Yokoyama H, Nagano H, Oda M, Sakuma S (1995) Synthesis and characterization of highly pure form of sodium salt of anionic, thiomalatogold (I) complex with antiarthritic activity. Analogs of anionic, thiomalatosilver (I) complex with antimicrobial activity. Bull Chem Soc Jpn 68:2875–2883

    Article  CAS  Google Scholar 

  • Nozaki H, Kuroda S, Watanabe K, Yokozeki K (2008) Gene cloning of α-methylserine aldolase from Variovorax paradoxus and purification and characterisation of the recombinant enzyme. Biosci Biotechnol Biochem 72:2580–2588

    Article  CAS  Google Scholar 

  • Otsu Y, Matsuda Y, Shimizu H, Ueki H, Mori H, Fujiwara K, Nakajima T, Miwa A, Nonomura T, Sakuratini Y, Tosa Y, Mayama S, Toyoda H (2003) Biological control of phytophagous ladybird beetles Epilachna vigintioctopunctata (Col., Coccinellidae) by chitinolytic phylloplane bacteria Alcaligenes paradoxus entrapped in alginate beads. J Appl Ent 127:441–446

    Article  Google Scholar 

  • Owsianiak M, Dechesne A, Binning PJ, Chambon JC, Sørensen SR, Smets BF (2010) Evaluation of bioaugmentation with entrapped degrading cells as a soil remediation technology. Environ Sci Technol 44:7622–7627

    Article  CAS  Google Scholar 

  • Palleroni NJ, Doudoroff M (1972) Some properties and taxonomic subdivisions of the genus Pseudomonas. Annu Rev Phytopathol 10:73–100

    Article  Google Scholar 

  • Pinel N, Davidson SK, Stahl DA (2008) Verminephrobacter eiseniae gen. nov., sp. nov., a nephridial symbiont of the earthworm Eisenia foetida (Savigny). Int J Syst Evol Microbiol 58:2147–2157

    Article  CAS  Google Scholar 

  • Polak EH, Provasi J (1992) Odor sensitivity to geosmin enantiomers. Chem Senses 17:23–26

    Article  CAS  Google Scholar 

  • Prasad B, Suresh S (2012) Biodegradation of dimethyl phthalate, diethyl phthalate, dibutyl phthalate and their mixture by Variovorax sp. Int J Environ Sci Dev 3:283–288

    Google Scholar 

  • Radi R (2004) Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci USA 101:4003–4008

    Article  CAS  Google Scholar 

  • Rajopadhye M, Popp FD (1987) Synthesis and antileukemic activity of spiro [indoline-3,2′-thiazolidine]-2,4´-diones. J Heterocycl Chem 24:1637–1642

    Article  CAS  Google Scholar 

  • Ravva SV, Hernlem BJ, Sarreal CZ, Mandrell RE (2012) Bacterial communities in urban aerosols collected with wetted-wall cyclonic samplers and seasonal fluctuations of live and culturable airborne bacteria. J Environ Monit 14:473–481

    Article  CAS  Google Scholar 

  • Rowland BJ, Villalon B, Burns EE (1983) Capsaicin production in sweet bell and pungent jalapeno peppers. J Agric Food Chem 312:484–487

    Article  Google Scholar 

  • Ryu SH, Lee DS, Park M, Wang Q, Jang HH, Park W, Jeon CO (2008) Caenimonas koreensis gen. nov., sp. nov. isolated from activated sludge. Int J Syst Evol Microbiol 58:1064–1068

    Article  CAS  Google Scholar 

  • Salmond GPC, Bycroft BW, Stewart GSAB, Williams P (1995) The bacterial ‘enigma’: cracking the code of cell–cell communication. Mol Microbiol 16:615–624

    Article  CAS  Google Scholar 

  • Sample TE Jr, Hatch LF (1968) 3-Sulfolene: a butadiene source for a Diels-Alder synthesis: an undergraduate laboratory experiment. J Chem Educ 45:55

    Article  CAS  Google Scholar 

  • Sandler M (1967) Catecholamine-secreting tumours. Proc R Soc Med 60:795–797

    CAS  Google Scholar 

  • Satsuma K (2010) Mineralisation of the herbicide linuron by Variovorax sp. strain RA8 isolated from Japanese river sediment using an ecosystem model (microcosm). Pest Manag Sci 66:847–852

    CAS  Google Scholar 

  • Schellenberg JJ, Links MG, Hill JE, Dumonceaux TJ, Kimani J, Jaoko W, Wachihi C, Mungai JN, Peters GA, Tyler S, Graham M, Severini A, Fowke KR, Ball TB, Plummer FA (2011) Molecular definition of vaginal microbiota in East African commercial sex workers. Appl Environ Microbiol 77:4066–4074

    Article  CAS  Google Scholar 

  • Schmalenberger A, Kertesz MA (2007) Desulfurisation of aromatic sulfonates by rhizosphere bacteria: high diversity of the asfA gene. Environ Microbiol 9:535–545

    Article  CAS  Google Scholar 

  • Schmalenberger A, Hodge S, Bryant A, Hawkesford MJ, Singh BK, Kertesz MA (2008) The role of Variovorax and other Comamonadaceae in sulfur transformations by microbial wheat rhizosphere communities exposed to different sulfur fertilization regimes. Environ Microbiol 10:1486–1500

    Article  CAS  Google Scholar 

  • Scott G (1968) Mechanisms of antioxidant action: esters of thiodipropionic acid. Chem Commun 24:1572–1574

    Google Scholar 

  • Segawa T, Miyamoto K, Ushida K, Agata K, Okada N, Kohshima S (2005) Seasonal change in bacterial flora and biomass in mountain snow from the Tateyama mountains, Japan, analyzed by 16S rRNA gene sequencing and real-time PCR. Appl Environ Microbiol 71:123–130

    Article  CAS  Google Scholar 

  • Snellinx Z, Taghavi S, Vangronsveld J, van der Lelie D (2003) Microbial consortia that degrade 2,4-DNT by interspecies metabolism: isolation and characterisation. Biodegradation 14:19–24

    Article  CAS  Google Scholar 

  • Sniegowski K, Bers K, Goetem KV, Ryckeboer J, Jaeken P, Spanoghe P, Springael D (2011a) Improvement of pesticide mineralization in on-farm biopurification systems by bioaugmentation with pesticide-primed soil. FEMS Microbiol Ecol 76:64–73

    Article  CAS  Google Scholar 

  • Sniegowski K, Bers K, Ryckeboer J, Jaeken P, Spanoghe P, Springael D (2011b) Robust linuron degradation in on-farm biopurification systems exposed to sequential environmental changes. Appl Environ Microbiol 77:6614–6621

    Article  CAS  Google Scholar 

  • Sørensen SR, Rasmussen J, Jacobsen CS, Jacobsen OS, Juhler RK, Aamand J (2005) Elucidating the key member of a linuron-mineralizing bacterial community by PCR and reverse transcription-PCR denaturing gradient gel electrophoresis 16S rRNA gene fingerprinting and cultivation. Appl Environ Microbiol 71:4144–4148

    Article  CAS  Google Scholar 

  • Spring S, Jäckel U, Wagner M, Kämpfer P (2004) Ottawia thiooxydans gen. nov., sp. nov., a novel facultatively anaerobic, N2O-producing bacterium isolated from activated sludge, and transfer of Aquaspirillum gracile to Hylemonella gracilis gen. nov., comb. nov. Int J Syst Evol Microbiol 54:99–106

    Article  CAS  Google Scholar 

  • Spring S, Wagner M, Schumann P, Kämpfer P (2005) Malikia granosa gen. nov., sp. nov., a novel polyhydroxyalkanoate- and polyphosphate-accumulating bacterium isolated from activated sludge, and reclassification of Pseudomonas spinosa as Malikia spinosa comb. nov. Int J Syst Evol Microbiol 55:621–629

    Article  CAS  Google Scholar 

  • Squillace PJ, Moran MJ, Lapham WW, Price CV, Clawges RM, Zogorski JS (1999) Volatile organic compounds in untreated ambient groundwater of the United States, 1985–1995. Environ Sci Technol 33:4176–4187

    Article  CAS  Google Scholar 

  • Suyama T, Hosoya H, Tokiwa Y (1998) Bacterial isolates degrading aliphatic polycarbonates. FEMS Microbiol Lett 161:255–261

    Article  CAS  Google Scholar 

  • Talia P, Sede SM, Campos E, Rorig M, Principi D, Tosto D, Hopp HE, Grasso D, Cataldi A (2012) Biodiversity characterization of cellulolytic bacteria present on native Chaco soil by comparison of ribosomal RNA genes. Res Microbiol 163:221–232

    Article  CAS  Google Scholar 

  • Thomas RAP, Lawlor K, Bailey M, Macaskie L (1998) Biodegradation of metal–EDTA complexes by an enriched microbial population. Appl Environ Microbiol 64:1319–1322

    CAS  Google Scholar 

  • Underwood JC, Harvey RW, Metge DW, Repert DA, Baumgartner LK, Smith RL, Roane TM, Barber LB (2011) Effects of the antimicrobial sulfamethoxazole on groundwater bacterial enrichment. Environ Sci Technol 45:3096–3101

    Article  CAS  Google Scholar 

  • Vallaeys T, Albino L, Soulas G, Wright AD, Weightman AJ (1998) Isolation and characterization of a stable 2,4-dichlorophenoxyacetic acid degrading bacterium, Variovorax paradoxus, using chemostat culture. Biotechnol Lett 20:1073–1076

    Article  CAS  Google Scholar 

  • Wang YP, Gu JD (2006) Degradability of dimethyl terephthalate by Variovorax paradoxus T4 and Sphingomonas yanoikuyae DOS01 isolated from deep-ocean sediments. Ecotoxicology 15:549–557

    Article  CAS  Google Scholar 

  • Willems A, Gillis M (2005) Family IV. Comamonadaceae. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology. Second edition, volume two: the Proteobacteria. Part C: the Alpha-, Beta-, Delta and Epsilonproteobacteria. Springer, New York, pp 686–688

    Google Scholar 

  • Willems A, De Ley J, Gillis M, Kersters K (1991) Comamonadaceae, a new family encompassing the Acidovorans rRNA complex, including Variovorax paradoxus gen. nov., comb. nov., for Alcaligenes paradoxus (Davis 1969). Int J Syst Bacteriol 41:445–450

    Article  Google Scholar 

  • Willems A, Mergaert J, Swings J (2005) Genus X. Variovorax. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology. Second edition, volume two: the Proteobacteria. Part C: the Alpha-, Beta-, Delta and Epsilonproteobacteria. Springer, New York, pp 732–735

    Google Scholar 

  • Wilson EM, Snell EE (1961) Metabolism of α-methylserine. I. α-Methylserine hydroxymethyltransferase. J Biol Chem 237:3171–3179

    Google Scholar 

  • Xie CH, Yokota A (2005) Reclassification of Alcaligenes latus strains IAM 12599T and IAM 12664 and Pseudomonas saccharophila as Azohydromonas lata gen. nov., comb. nov., Azohydromonas australica sp. nov. and Pelomonas saccharophila gen. nov., comb. nov., respectively. Int J Syst Evol Microbiol 55:2419–2425

    Article  CAS  Google Scholar 

  • Yoon JH, Kang SJ, Oh TK (2006) Variovorax dokdonensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 56:811–814

    Article  CAS  Google Scholar 

  • Youngster LKG, Rosell M, Richnow HH, Häggblom MM (2010) Assessment of MTBE biodegradation pathways by two-dimensional isotope analysis in mixed bacterial consortia under different redox conditions. Appl Microbiol Biotechnol 88:309–317

    Article  CAS  Google Scholar 

  • Zaitsev GM, Uotila JS, Häggblom MM (2007) Biodegradation of methyl tert-butyl ether by cold-adapted mixed and pure bacterial cultures. Appl Microbiol Biotechnol 74:1092–1102

    Article  CAS  Google Scholar 

  • Zhang S, Wan R, Wang Q, Xie S (2011) Identification of anthracene degraders in leachate-contaminated aquifer using stable isotope probing. Int Biodeterior Biodegrad 65:1224–1228

    Article  CAS  Google Scholar 

  • Zhang HJ, Zhou QW, Zhou GC, Cao YM, Dai YJ, Ji WW, Shang GD, Yuan S (2012) Biotransformation of the neonicotinoid insecticide thiacloprid by the bacterium Variovorax boronicumulans strain J1 and mediation of the major metabolic pathway by nitrile hydratase. J Agric Food Chem 60:153–159

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Steinbüchel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satola, B., Wübbeler, J.H. & Steinbüchel, A. Metabolic characteristics of the species Variovorax paradoxus . Appl Microbiol Biotechnol 97, 541–560 (2013). https://doi.org/10.1007/s00253-012-4585-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4585-z

Keywords

Navigation