Advertisement

Applied Microbiology and Biotechnology

, Volume 97, Issue 2, pp 541–560 | Cite as

Metabolic characteristics of the species Variovorax paradoxus

  • Barbara Satola
  • Jan Hendrik Wübbeler
  • Alexander Steinbüchel
Mini-Review

Abstract

This review outlines information about the Gram-negative, aerobic bacterium Variovorax paradoxus. The genomes of these species have G+C contents of 66.5–69.4 mol%, and the cells form yellow colonies. Some strains of V. paradoxus are facultative lithoautotrophic, others are chemoorganotrophic. Many of them are associated with important catabolic processes including the degradation of toxic and/or complex chemical compounds. The degradation pathways or other skills related to the following compounds, respectively, are described in this review: sulfolane, 3-sulfolene, 2-mercaptosuccinic acid, 3,3′-thiodipropionic acid, aromatic sulfonates, alkanesulfonates, amino acids and other sulfur sources, polychlorinated biphenyls, dimethyl terephthalate, linuron, 2,4-dinitrotoluene, homovanillate, veratraldehyde, 2,4-dichlorophenoxyacetic acid, anthracene, poly(3-hydroxybutyrate), chitin, cellulose, humic acids, metal–EDTA complexes, yttrium, rare earth elements, As(III), trichloroethylene, capsaicin, 3-nitrotyrosine, acyl-homoserine lactones, 1-aminocyclopropane-1-carboxylate, methyl tert-butyl ether, geosmin, and 2-methylisoborneol. Strains of V. paradoxus are also engaged in mutually beneficial interactions with other plant and bacterial species in various ecosystems. This species comprises probably promising strains for bioremediation and other biotechnical applications. Lately, the complete genomes of strains S110 and EPS have been sequenced for further investigations.

Keywords

Variovorax paradoxus Comamonadaceae Biodegradation Bioremediation Metabolic diversity 

References

  1. Abraham WR, Nogales B, Golyshin PN, Pieper DH, Timmis KN (2002) Polychlorinated biphenyl-degrading microbial communities in soils and sediments. Curr Opin Microbiol 5:246–253CrossRefGoogle Scholar
  2. Allison N, Turner JE, Wait R (1995) Degradation of homovanillate by a strain of Variovorax paradoxus via ring hydroxylation. FEMS Microbiol Lett 134:213–219CrossRefGoogle Scholar
  3. Appel RB, Tomlinson IA, Hill I (1995) New reagents for the reductive quenching of ozonolysis reactions. Synth Commun 25:3589–3595CrossRefGoogle Scholar
  4. Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz KJ, Stepanok VV (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:642–652CrossRefGoogle Scholar
  5. Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern). Soil Biol Biochem 37:241–250CrossRefGoogle Scholar
  6. Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol 181:413–423CrossRefGoogle Scholar
  7. Bers K, Sniegowski K, Albers P, Breugelmans P, Hendrickx L, de Mot R, Springael D (2011a) A molecular toolbox to estimate the number and diversity of Variovorax in the environment: application in soils treated with the phenylurea herbicide linuron. FEMS Microbiol Ecol 76:14–25CrossRefGoogle Scholar
  8. Bers K, Leroy B, Breugelmans P, Albers P, Lavigne R, Sørensen SR, Aamand J, de Mot R, Wattiez R, Springael D (2011b) A novel hydrolase identified by genomic–proteomic analysis of phenylurea herbicide mineralization by Variovorax sp. strain SRS16. Appl Environ Microbiol 77:8754–8764CrossRefGoogle Scholar
  9. Breugelmans P, Leroy B, Bers K, Dejonghe W, Wattiez R, Rd M, Springael D (2010) Proteomic study of linuron and 3,4-dichloroaniline degradation by Variovorax sp. WDL1: evidence for the involvement of an aniline dioxygenase-related multicomponent protein. Res Microbiol 161:208–218CrossRefGoogle Scholar
  10. Bruland N, Bathe S, Willems A, Steinbüchel A (2009a) Pseudorhodoferax soli gen. nov., sp. nov. and Pseudorhodoferax caeni sp. nov., two members of the class Betaproteobacteria belonging to the family Comamonadaceae. Int J Syst Evol Microbiol 59:2702–2707CrossRefGoogle Scholar
  11. Bruland N, Wübbeler JH, Steinbüchel A (2009b) 3-Mercaptopropionate dioxygenase, a cysteine dioxygenase homologue, catalyzes the initial step of 3-mercaptopropionate catabolism in the 3,3-thiodipropionic acid-degrading bacterium Variovorax paradoxus. J Biol Chem 284:660–672CrossRefGoogle Scholar
  12. Burgess EA, Unrine JM, Mills GL, Romanek CS, Wiegel J (2012) Comparative geochemical and microbiological characterization of two thermal pools in the Uzon Caldera, Kamchatka, Russia. Microb Ecol 63:471–489CrossRefGoogle Scholar
  13. Carbajal-Rodríguez I, Stöveken N, Satola B, Wübbeler JH, Steinbüchel A (2011) Aerobic degradation of mercaptosuccinate by the Gram-negative bacterium Variovorax paradoxus strain B4. J Bacteriol 193:527–539CrossRefGoogle Scholar
  14. Caux PY, Kent RA, Fan GT, Grande C (1998) Canadian water quality guidelines for linuron. Environ Toxicol Water Qual 13:1–41CrossRefGoogle Scholar
  15. Coenye T, Vancanneyt M, Cnockaert MC, Falsen E, Swings J, Vandamme P (2003) Kerstersia gyiorum gen. nov., sp. nov., a novel Alcaligenes faecalis-like organism isolated from human clinical samples, and reclassification of Alcaligenes denitrificans Rüger and Tan 1983 as Achromobacter denitrificans comb. nov. Int J Syst Evol Microbiol 53:1825–1831CrossRefGoogle Scholar
  16. Collin G, Höke H, Talbiersky J (2006) Anthracene. Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim. doi: 10.1002/14356007.a02_343 Google Scholar
  17. Dave MP, Patel JM, Langalia NA, Thaker KA (1984) Synthesis and antitubercular activity of some 2-aryl-3-[4-chlorobenzamido]-5-substituted-4-thiazolidinones. J Indian Chem Soc 61:891–892Google Scholar
  18. Davis DH, Doudoroff M, Stanier RY, Mandel M (1969) Proposal to reject the genus Hydrogenomonas: taxonomic implications. Int J Syst Bacteriol 19:375–390CrossRefGoogle Scholar
  19. Dejonghe W, Berteloot E, Goris J, Boon N, Crul K, Maertens S, Höfte M, Vos PD, Verstraete W, Top EM (2003) Synergistic degradation of linuron by a bacterial consortium and isolation of a single linuron-degrading Variovorax strain. Appl Environ Microbiol 69:1532–1541CrossRefGoogle Scholar
  20. Delafield FP, Doudoroff M, Palleroni NJ, Lusty CJ, Contopoulou CR (1965) Decomposition of poly-β-hydroxybutyrate by pseudomonads. J Bacteriol 90:1455–1466Google Scholar
  21. Ding L, Yokota A (2004) Proposals of Curvibacter gracilis gen. nov., sp. nov. and Herbaspirillum putei sp. nov. for bacterial strains isolated from well water and reclassification of [Pseudomonas] huttiensis, [Pseudomonas] lanceolata, [Aquaspirillum] delicatum and [Aquaspirillum] autotrophicum as Herbaspirillum huttiense comb. nov., Curvibacter lanceolatus comb. nov., Curvibacter delicatus comb. nov. and Herbaspirillum autotrophicum comb. nov. Int J Syst Evol Microbiol 54:2223–2230CrossRefGoogle Scholar
  22. Dodd IC, Jiang F, Teijeiro RG, Belimov AA, Hartung W (2009) The rhizosphere bacterium Variovorax paradoxus 5C-2 containing ACC deaminase does not increase systemic ABA signaling in maize (Zea mays L.). Plant Signal Behav 4:519–521CrossRefGoogle Scholar
  23. Don RH, Pemberton JM (1981) Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J Bacteriol 145:681–686Google Scholar
  24. Don RH, Weightman AJ, Knackmuss HJ, Timmis KN (1985) Transposon mutagenesis and cloning analysis of the pathways for degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate in Alcaligenes eutrophus JMP134(pJP4). J Bacteriol 161:85–90Google Scholar
  25. Egli T (1988) (An)aerobic breakdown of chelating agents used in household detergents. Microbiol Sci 5:36–41Google Scholar
  26. Fahlbusch K-G, Hammerschmidt F-J, Panten J, Pickenhagen W, Schatkowski D, Bauer K, Garbe D, Surburg H (2003) Flavors and fragrances. Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim. doi: 10.1002/14356007.a11_141 Google Scholar
  27. Fehling E, Klein E, Vosmann K, Bergander K, Weber N (2008) Linear copolymeric poly(thia-alkanedioates) by lipase-catalyzed esterification and transesterification of 3,3′-thiodipropionic acid and its dimethyl ester with α, ω-alkandiols. Biotechnol Bioeng 99:1074–1084CrossRefGoogle Scholar
  28. Filip Z, Bielek P (2002) Susceptibility of humic acids from soils with various contents of metals to microbial utilization and transformation. Biol Fertil Soils 36:426–433CrossRefGoogle Scholar
  29. Fisher PR, Appleton J, Pemberton JM (1978) Isolation and characterisation of the pesticide-degrading plasmid pJP1 from Alcaligenes paradoxus. J Bacteriol 135:798–804Google Scholar
  30. Fitzgerald KJ, Richardson JA (1966) How gas composition affects treating process selection. Hydrocarb Process 45:127–130Google Scholar
  31. Flagan SF, Leadbetter JR (2006) Utilization of capsaicin and vanillylamine as growth substrates by Capsicum (hot pepper)-associated bacteria. Environ Microbiol 8:560–565CrossRefGoogle Scholar
  32. Folsom BR, Chapman PJ, Pritchard PH (1990) Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrates. Appl Environ Microbiol 56:1279–1285Google Scholar
  33. Futamata H, Harayama S, Watanabe K (2001a) Group-specific monitoring of phenol hydroxylase genes for a functional assessment of phenol-stimulated trichloroethylene bioremediation. Appl Environ Microbiol 67:4671–4677CrossRefGoogle Scholar
  34. Futamata H, Harayama S, Watanabe K (2001b) Diversity in kinetics of trichloroethylene-degrading activities exhibited by phenol-degrading bacteria. Appl Microbiol Biotechnol 55:248–253CrossRefGoogle Scholar
  35. Futamata H, Nagano Y, Watanabe K, Hiraishi A (2005) Unique kinetic properties of phenol-degrading Variovorax strains responsible for efficient trichloroethylene degradation in a chemostat enrichment culture. Appl Environ Microbiol 71:904–911CrossRefGoogle Scholar
  36. Gomila M, Pinhassi J, Falsen E, Moore ERB, Lalucat J (2010) Kinneretia asaccharophila gen. nov., sp. nov., isolated from a freshwater lake, a member of the Rubrivivax branch of the family Comamonadaceae. Int J Syst Evol Microbiol 60:809–814CrossRefGoogle Scholar
  37. Grabovich M, Gavrish E, Kuever J, Lysenko AM, Podkopaeva D, Dubinina G (2006) Proposal of Giesbergeria voronezhensis gen. nov., sp. nov. and G. kuznetsovii sp. nov. and reclassification of [Aquaspirillum] anulus, [A.] sinuosum and [A.] giesbergeri as Giesbergeria anulus comb. nov., G. sinuosa comb. nov. and G. giesbergeri comb. nov., and [Aquaspirillum] metamorphum and [A.] psychrophilum as Simplicispira metamorpha gen. nov., comb. nov. and S. psychrophila comb. nov. Int J Syst Evol Microbiol 56:569–576CrossRefGoogle Scholar
  38. Gray KA, Pogrebinsky OS, Mrachko T, Xi L, Monticello DJ, Squires CH (1996) Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat Biotechnol 14:1705–1709CrossRefGoogle Scholar
  39. Greene EA, Beatty PH, Fedorak PM (2000) Sulfolane degradation by mixed cultures and a bacterial isolate identified as a Variovorax sp. Arch Microbiol 174:111–119CrossRefGoogle Scholar
  40. Gross MJ, Logan BE (1995) Influence of different chemical treatments on transport of Alcaligenes paradoxus in porous media. Appl Environ Microbiol 61:1750–1756Google Scholar
  41. Guttman L, van Rijn J (2012) Isolation of bacteria capable of growth with 2-methylisoborneol and geosmin as the sole carbon and energy sources. Appl Environ Microbiol 78:363–370CrossRefGoogle Scholar
  42. Hahn MW, Kasalick V, Jezbera J, Brandt U, Jezberova J, Simek K (2010) Limnohabitans curvus gen. nov., sp. nov., a planctonic bacterium isolated from a freshwater lake. Int J Syst Evol Microbiol 60:1358–1365CrossRefGoogle Scholar
  43. Han JI, Choi HK, Lee SW, Orwin PM, Kim J, LaRoe SL, Kim T, O'Neil J, Leadbetter JR, Lee SY, Hur CG, Spain JC, Ovchinnikova G, Goodwin L, Cliff H (2011a) Complete genome sequence of the metabolically versatile plant growth-promoting endophyte Variovorax paradoxus S110. J Bacteriol 193:1183–1190CrossRefGoogle Scholar
  44. Han J, Song Y, Liu Z, Hu Y (2011b) Culturable bacterial community analysis in the root domains of two varieties of tree peony (Paeonia ostii). FEMS Microbiol Lett 322:15–24CrossRefGoogle Scholar
  45. Im WT, Liu QM, Lee GJ, Lee ST, Yi TH (2010) Variovorax ginsengisoli sp. nov., a denitrifying bacterium isolated from soil of a ginseng field in South Korea. Int J Syst Evol Microbiol 60:1565–1569CrossRefGoogle Scholar
  46. Jamieson WD, Pehl MJ, Gregory GA, Orwin PM (2009) Coordinated surface activities in Variovorax paradoxus EPS. BMC Microbiol 9:124CrossRefGoogle Scholar
  47. Jin L, Kim KK, Ahn CY, Oh HM (2012) Variovorax defluvii sp. nov., isolated from sewage flowing into 3 River Geumho in South Korea. Int J Syst Evol Microbiol. doi: 10.1099/ijs.0.035295-0
  48. Jones MD, Singleton DR, Sun W, Aitken MD (2011) Multiple DNA extractions coupled with stable-isotope probing of anthracene-degrading bacteria in contaminated soil. Appl Environ Microbiol 77:2984–2991CrossRefGoogle Scholar
  49. Jüttner F, Watson SB (2007) Biochemical and ecological control of geosmin and 2-methylisoborneol in source waters. Appl Environ Microbiol 73:4395–4406CrossRefGoogle Scholar
  50. Ka JO, Tiedje JM (1994) Integration and excision of a 2,4-dichlorophenoxyacetic acid-degradative plasmid in Alcaligenes paradoxus and evidence of its natural intergeneric transfer. J Bacteriol 176:5284–5289Google Scholar
  51. Kamagata Y, Fulthorpe RR, Tamura K, Takami H, Forney LJ, Tiedje JM (1997) Pristine environments harbor a new group of oligotrophic 2,4-dichlorophenoxyacetic acid-degrading bacteria. Appl Environ Microbiol 63:2266–2272Google Scholar
  52. Kamijo M, Suzuki T, Kawai K, Murase H (1998) Accumulation of yttrium by Variovorax paradoxus. J Ferment Bioeng 86:564–568CrossRefGoogle Scholar
  53. Kämpfer P, Thummes K, Chu HI, Tan CC, Arun AB, Chen WM, Lai WA, Shen FT, Rekha PD, Young CC (2008) Pseudoacidovorax intermedius gen. nov., sp. nov., a novel nitrogen-fixing betaproteobacterium isolated from soil. Int J Syst Evol Microbiol 58:491–495CrossRefGoogle Scholar
  54. Kanzler BEM, Pfannes KR, Vogl K, Overmann J (2005) Molecular characterization of the nonphotosynthetic partner bacterium in the consortium “Chlorochromatium aggregatum”. Appl Environ Microbiol 71:7434–7441CrossRefGoogle Scholar
  55. Kern HW, Kirk TK (1987) Influence of molecular size and ligninase pretreatment on degradation of lignins by Xanthomonas sp. strain 99. Appl Environ Microbiol 53:2242–2246Google Scholar
  56. Kim BY, Weon HY, Yoo SH, Lee SY, Kwon SW, Go SJ, Stackebrandt E (2006) Variovorax soli sp. nov., isolated from greenhouse soil. Int J Syst Evol Microbiol 56:2899–2901CrossRefGoogle Scholar
  57. Kirst H, Sides GD (1989) New direction for macrolide antibiotics: structural modifications and in vitro activity. Antimicrob Agents Chemother 33:1413–1418CrossRefGoogle Scholar
  58. Krieg L, Ansorge-Schumacher MB, Kula MR (2002) Screening for amidases: isolation and characterisation of a novel D-amidase from Variovorax paradoxus. Adv Synth Catal 344:965–973CrossRefGoogle Scholar
  59. Leadbetter JR, Greenberg EP (2000) Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J Bacteriol 182:6921–6926CrossRefGoogle Scholar
  60. Lee J, Lee CS, Hugunin KM, Maute CJ, Dysko RC (2010) Bacteria from drinking water supply and their fate in gastrointestinal tracts of germ-free mice: a phylogenetic comparison study. Water Res 44:5050–5058CrossRefGoogle Scholar
  61. Leydet A, Jeantet-Segonds C, Bouchitte C, Boyer B, Roque JP, Witvrouw M, Este J, Snoeck R, Andrei G, DeClercq E (1997) Polyanion inhibitors of human immunodeficiency virus and other viruses. 6. Micelle-like anti-HIV polyanionic compounds based on a carbohydrate core. J Med Chem 40:350–356CrossRefGoogle Scholar
  62. Lin PH, Su SC, Tsai YC, Lee CY (2002) Identification and characterisation of a new gene from Variovorax paradoxus Iso1 encoding N-acyl-D-amino acid amidohydrolase responsible for D-amino acid production. Eur J Biochem 269:4868–4878CrossRefGoogle Scholar
  63. Lütke-Eversloh T, Steinbüchel A (2003) Novel precursor substrates for polythioester (PTE) and limits of polythioester biosynthesis in Ralstonia eutropha. FEMS Microbiol Lett 221:191–196CrossRefGoogle Scholar
  64. Macur RE, Jackson CR, Botero LM, McDermott TR, Inskeep WP (2004) Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil. Environ Sci Technol 38:104–111CrossRefGoogle Scholar
  65. Mergaert J, Webb A, Anderson C, Wouters A, Swings J (1993) Microbial degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in soils. Appl Environ Microbiol 59:3233–3238Google Scholar
  66. Mergaert J, Ruffieux K, Bourban C, Storms V, Wagemans W, Wintermantel E, Swings J (2000) In vitro biodegradation of polyester-based plastic materials by selected bacterial cultures. J Polym Environ 8:17–27CrossRefGoogle Scholar
  67. Miwa H, Ahmed I, Yoon J, Yokota A, Fujiwara T (2008) Variovorax boronicumulans sp. nov., a boron-accumulating bacterium isolated from soil. Int J Syst Evol Microbiol 58:286–289CrossRefGoogle Scholar
  68. Mohan K, Khanna S (1993) Degradation of veratraldehyde by Alcaligenes paradoxus. FEMS Microbiol Lett 108:361–366CrossRefGoogle Scholar
  69. Nelson MJK, Montgomery SO, Mahaffey WR, Pritchard PH (1987) Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway. Appl Environ Microbiol 53:949–954Google Scholar
  70. Nelson MJK, Montgomery SO, Pritchard PH (1988) Trichloroethylene metabolism by microorganisms that degrade aromatic compounds. Appl Environ Microbiol 54:604–606Google Scholar
  71. Nishino SF, Spain JC (2006) Biodegradation of 3-nitrotyrosine by Burkholderia sp. strain JS165 and Variovorax paradoxus JS171. Appl Environ Microbiol 72:1040–1044CrossRefGoogle Scholar
  72. Nishino SF, Paoli GC, Spain JC (2000) Aerobic degradation of dinitrotoluenes and pathway for bacterial degradation of 2,6-dinitrotoluene. Appl Environ Microbiol 66:2139–2147CrossRefGoogle Scholar
  73. Nogales B, Moore ERB, Abraham WR, Timmis KN (1999) Identification of the metabolically active members of a bacterial community in a polychlorinated biphenyl-polluted moorland soil. Environ Microbiol 1:199–212CrossRefGoogle Scholar
  74. Nomiya K, Yokoyama H, Nagano H, Oda M, Sakuma S (1995) Synthesis and characterization of highly pure form of sodium salt of anionic, thiomalatogold (I) complex with antiarthritic activity. Analogs of anionic, thiomalatosilver (I) complex with antimicrobial activity. Bull Chem Soc Jpn 68:2875–2883CrossRefGoogle Scholar
  75. Nozaki H, Kuroda S, Watanabe K, Yokozeki K (2008) Gene cloning of α-methylserine aldolase from Variovorax paradoxus and purification and characterisation of the recombinant enzyme. Biosci Biotechnol Biochem 72:2580–2588CrossRefGoogle Scholar
  76. Otsu Y, Matsuda Y, Shimizu H, Ueki H, Mori H, Fujiwara K, Nakajima T, Miwa A, Nonomura T, Sakuratini Y, Tosa Y, Mayama S, Toyoda H (2003) Biological control of phytophagous ladybird beetles Epilachna vigintioctopunctata (Col., Coccinellidae) by chitinolytic phylloplane bacteria Alcaligenes paradoxus entrapped in alginate beads. J Appl Ent 127:441–446CrossRefGoogle Scholar
  77. Owsianiak M, Dechesne A, Binning PJ, Chambon JC, Sørensen SR, Smets BF (2010) Evaluation of bioaugmentation with entrapped degrading cells as a soil remediation technology. Environ Sci Technol 44:7622–7627CrossRefGoogle Scholar
  78. Palleroni NJ, Doudoroff M (1972) Some properties and taxonomic subdivisions of the genus Pseudomonas. Annu Rev Phytopathol 10:73–100CrossRefGoogle Scholar
  79. Pinel N, Davidson SK, Stahl DA (2008) Verminephrobacter eiseniae gen. nov., sp. nov., a nephridial symbiont of the earthworm Eisenia foetida (Savigny). Int J Syst Evol Microbiol 58:2147–2157CrossRefGoogle Scholar
  80. Polak EH, Provasi J (1992) Odor sensitivity to geosmin enantiomers. Chem Senses 17:23–26CrossRefGoogle Scholar
  81. Prasad B, Suresh S (2012) Biodegradation of dimethyl phthalate, diethyl phthalate, dibutyl phthalate and their mixture by Variovorax sp. Int J Environ Sci Dev 3:283–288Google Scholar
  82. Radi R (2004) Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci USA 101:4003–4008CrossRefGoogle Scholar
  83. Rajopadhye M, Popp FD (1987) Synthesis and antileukemic activity of spiro [indoline-3,2′-thiazolidine]-2,4´-diones. J Heterocycl Chem 24:1637–1642CrossRefGoogle Scholar
  84. Ravva SV, Hernlem BJ, Sarreal CZ, Mandrell RE (2012) Bacterial communities in urban aerosols collected with wetted-wall cyclonic samplers and seasonal fluctuations of live and culturable airborne bacteria. J Environ Monit 14:473–481CrossRefGoogle Scholar
  85. Rowland BJ, Villalon B, Burns EE (1983) Capsaicin production in sweet bell and pungent jalapeno peppers. J Agric Food Chem 312:484–487CrossRefGoogle Scholar
  86. Ryu SH, Lee DS, Park M, Wang Q, Jang HH, Park W, Jeon CO (2008) Caenimonas koreensis gen. nov., sp. nov. isolated from activated sludge. Int J Syst Evol Microbiol 58:1064–1068CrossRefGoogle Scholar
  87. Salmond GPC, Bycroft BW, Stewart GSAB, Williams P (1995) The bacterial ‘enigma’: cracking the code of cell–cell communication. Mol Microbiol 16:615–624CrossRefGoogle Scholar
  88. Sample TE Jr, Hatch LF (1968) 3-Sulfolene: a butadiene source for a Diels-Alder synthesis: an undergraduate laboratory experiment. J Chem Educ 45:55CrossRefGoogle Scholar
  89. Sandler M (1967) Catecholamine-secreting tumours. Proc R Soc Med 60:795–797Google Scholar
  90. Satsuma K (2010) Mineralisation of the herbicide linuron by Variovorax sp. strain RA8 isolated from Japanese river sediment using an ecosystem model (microcosm). Pest Manag Sci 66:847–852Google Scholar
  91. Schellenberg JJ, Links MG, Hill JE, Dumonceaux TJ, Kimani J, Jaoko W, Wachihi C, Mungai JN, Peters GA, Tyler S, Graham M, Severini A, Fowke KR, Ball TB, Plummer FA (2011) Molecular definition of vaginal microbiota in East African commercial sex workers. Appl Environ Microbiol 77:4066–4074CrossRefGoogle Scholar
  92. Schmalenberger A, Kertesz MA (2007) Desulfurisation of aromatic sulfonates by rhizosphere bacteria: high diversity of the asfA gene. Environ Microbiol 9:535–545CrossRefGoogle Scholar
  93. Schmalenberger A, Hodge S, Bryant A, Hawkesford MJ, Singh BK, Kertesz MA (2008) The role of Variovorax and other Comamonadaceae in sulfur transformations by microbial wheat rhizosphere communities exposed to different sulfur fertilization regimes. Environ Microbiol 10:1486–1500CrossRefGoogle Scholar
  94. Scott G (1968) Mechanisms of antioxidant action: esters of thiodipropionic acid. Chem Commun 24:1572–1574Google Scholar
  95. Segawa T, Miyamoto K, Ushida K, Agata K, Okada N, Kohshima S (2005) Seasonal change in bacterial flora and biomass in mountain snow from the Tateyama mountains, Japan, analyzed by 16S rRNA gene sequencing and real-time PCR. Appl Environ Microbiol 71:123–130CrossRefGoogle Scholar
  96. Snellinx Z, Taghavi S, Vangronsveld J, van der Lelie D (2003) Microbial consortia that degrade 2,4-DNT by interspecies metabolism: isolation and characterisation. Biodegradation 14:19–24CrossRefGoogle Scholar
  97. Sniegowski K, Bers K, Goetem KV, Ryckeboer J, Jaeken P, Spanoghe P, Springael D (2011a) Improvement of pesticide mineralization in on-farm biopurification systems by bioaugmentation with pesticide-primed soil. FEMS Microbiol Ecol 76:64–73CrossRefGoogle Scholar
  98. Sniegowski K, Bers K, Ryckeboer J, Jaeken P, Spanoghe P, Springael D (2011b) Robust linuron degradation in on-farm biopurification systems exposed to sequential environmental changes. Appl Environ Microbiol 77:6614–6621CrossRefGoogle Scholar
  99. Sørensen SR, Rasmussen J, Jacobsen CS, Jacobsen OS, Juhler RK, Aamand J (2005) Elucidating the key member of a linuron-mineralizing bacterial community by PCR and reverse transcription-PCR denaturing gradient gel electrophoresis 16S rRNA gene fingerprinting and cultivation. Appl Environ Microbiol 71:4144–4148CrossRefGoogle Scholar
  100. Spring S, Jäckel U, Wagner M, Kämpfer P (2004) Ottawia thiooxydans gen. nov., sp. nov., a novel facultatively anaerobic, N2O-producing bacterium isolated from activated sludge, and transfer of Aquaspirillum gracile to Hylemonella gracilis gen. nov., comb. nov. Int J Syst Evol Microbiol 54:99–106CrossRefGoogle Scholar
  101. Spring S, Wagner M, Schumann P, Kämpfer P (2005) Malikia granosa gen. nov., sp. nov., a novel polyhydroxyalkanoate- and polyphosphate-accumulating bacterium isolated from activated sludge, and reclassification of Pseudomonas spinosa as Malikia spinosa comb. nov. Int J Syst Evol Microbiol 55:621–629CrossRefGoogle Scholar
  102. Squillace PJ, Moran MJ, Lapham WW, Price CV, Clawges RM, Zogorski JS (1999) Volatile organic compounds in untreated ambient groundwater of the United States, 1985–1995. Environ Sci Technol 33:4176–4187CrossRefGoogle Scholar
  103. Suyama T, Hosoya H, Tokiwa Y (1998) Bacterial isolates degrading aliphatic polycarbonates. FEMS Microbiol Lett 161:255–261CrossRefGoogle Scholar
  104. Talia P, Sede SM, Campos E, Rorig M, Principi D, Tosto D, Hopp HE, Grasso D, Cataldi A (2012) Biodiversity characterization of cellulolytic bacteria present on native Chaco soil by comparison of ribosomal RNA genes. Res Microbiol 163:221–232CrossRefGoogle Scholar
  105. Thomas RAP, Lawlor K, Bailey M, Macaskie L (1998) Biodegradation of metal–EDTA complexes by an enriched microbial population. Appl Environ Microbiol 64:1319–1322Google Scholar
  106. Underwood JC, Harvey RW, Metge DW, Repert DA, Baumgartner LK, Smith RL, Roane TM, Barber LB (2011) Effects of the antimicrobial sulfamethoxazole on groundwater bacterial enrichment. Environ Sci Technol 45:3096–3101CrossRefGoogle Scholar
  107. Vallaeys T, Albino L, Soulas G, Wright AD, Weightman AJ (1998) Isolation and characterization of a stable 2,4-dichlorophenoxyacetic acid degrading bacterium, Variovorax paradoxus, using chemostat culture. Biotechnol Lett 20:1073–1076CrossRefGoogle Scholar
  108. Wang YP, Gu JD (2006) Degradability of dimethyl terephthalate by Variovorax paradoxus T4 and Sphingomonas yanoikuyae DOS01 isolated from deep-ocean sediments. Ecotoxicology 15:549–557CrossRefGoogle Scholar
  109. Willems A, Gillis M (2005) Family IV. Comamonadaceae. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology. Second edition, volume two: the Proteobacteria. Part C: the Alpha-, Beta-, Delta and Epsilonproteobacteria. Springer, New York, pp 686–688Google Scholar
  110. Willems A, De Ley J, Gillis M, Kersters K (1991) Comamonadaceae, a new family encompassing the Acidovorans rRNA complex, including Variovorax paradoxus gen. nov., comb. nov., for Alcaligenes paradoxus (Davis 1969). Int J Syst Bacteriol 41:445–450CrossRefGoogle Scholar
  111. Willems A, Mergaert J, Swings J (2005) Genus X. Variovorax. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology. Second edition, volume two: the Proteobacteria. Part C: the Alpha-, Beta-, Delta and Epsilonproteobacteria. Springer, New York, pp 732–735Google Scholar
  112. Wilson EM, Snell EE (1961) Metabolism of α-methylserine. I. α-Methylserine hydroxymethyltransferase. J Biol Chem 237:3171–3179Google Scholar
  113. Xie CH, Yokota A (2005) Reclassification of Alcaligenes latus strains IAM 12599T and IAM 12664 and Pseudomonas saccharophila as Azohydromonas lata gen. nov., comb. nov., Azohydromonas australica sp. nov. and Pelomonas saccharophila gen. nov., comb. nov., respectively. Int J Syst Evol Microbiol 55:2419–2425CrossRefGoogle Scholar
  114. Yoon JH, Kang SJ, Oh TK (2006) Variovorax dokdonensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 56:811–814CrossRefGoogle Scholar
  115. Youngster LKG, Rosell M, Richnow HH, Häggblom MM (2010) Assessment of MTBE biodegradation pathways by two-dimensional isotope analysis in mixed bacterial consortia under different redox conditions. Appl Microbiol Biotechnol 88:309–317CrossRefGoogle Scholar
  116. Zaitsev GM, Uotila JS, Häggblom MM (2007) Biodegradation of methyl tert-butyl ether by cold-adapted mixed and pure bacterial cultures. Appl Microbiol Biotechnol 74:1092–1102CrossRefGoogle Scholar
  117. Zhang S, Wan R, Wang Q, Xie S (2011) Identification of anthracene degraders in leachate-contaminated aquifer using stable isotope probing. Int Biodeterior Biodegrad 65:1224–1228CrossRefGoogle Scholar
  118. Zhang HJ, Zhou QW, Zhou GC, Cao YM, Dai YJ, Ji WW, Shang GD, Yuan S (2012) Biotransformation of the neonicotinoid insecticide thiacloprid by the bacterium Variovorax boronicumulans strain J1 and mediation of the major metabolic pathway by nitrile hydratase. J Agric Food Chem 60:153–159CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Barbara Satola
    • 1
  • Jan Hendrik Wübbeler
    • 1
  • Alexander Steinbüchel
    • 1
    • 2
  1. 1.Institut für Molekulare Mikrobiologie und BiotechnologieWestfälische Wilhelms-Universität MünsterMünsterGermany
  2. 2.Environmental Sciences DepartmentKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations