Skip to main content

Advertisement

Log in

Comparative analysis of temperature-dependent transcriptome of Pseudomonas aeruginosa strains from rhizosphere and human habitats

  • Genomics, transcriptomics, proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, we investigated the effects of a change in growth temperature on the transcriptome of two strains of Pseudomonas aeruginosa. The chosen P. aeruginosa strains were M18 and PAO1, which are adapted to two different niches, rhizosphere and human, respectively. To assess the changes induced by a change in temperature, we used a newly designed microarray covering the complete genome of four P. aeruginosa strains: PAO1, M18, PA14 and LESB58, which proved informative and reliable for the transcriptome study. Using the microarray, we analysed the transcriptome profile changes of two P. aeruginosa strains of M18 and PAO1 at their originating and non-originating temperatures: 28 °C for the rhizosphere and 37 °C for the human. The transcriptome profiles showed significant temperature-dependent differences (64.8 % in M18 and 66.8 % in PAO1) compared with the genome structure (6 % in M18 and 4.1 % in PAO1). Furthermore, we found that the specific induced genes at the non-originating growth temperature of the each strain (207 genes in M18 and 229 genes in PAO1) were evidently more than those induced at the originating growth temperature (158 genes in M18 and 169 genes in PAO1). The functional analysis of several newly found specific regulated operons (such as phh, liu, hmg) in the two strains indicated possible strategies implemented to respond to the non-originating temperature. This study provides new insight into how P. aeruginosa species responds to temperature change and a microarray platform covering the complete genomes of four widely studied P. aeruginosa strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anjaiah V, Cornelis P, Koedam N (2003) Effect of genotype and root colonization in biological control of fusarium wilts in pigeonpea and chickpea by Pseudomonas aeruginosa PNA1. Can J Microbiol 49:85–91

    Article  CAS  Google Scholar 

  • Attila C, Ueda A, Wood TK (2008) PA2663 (PpyR) increases biofilm formation in Pseudomonas aeruginosa PAO1 through the psl operon and stimulates virulence and quorum-sensing phenotypes. Appl Microbiol Biotechnol 78:293–307

    Article  CAS  Google Scholar 

  • Balasubramanian D, Mathee K (2009) Comparative transcriptome analyses of Pseudomonas aeruginosa. Hum Genomics 3:349–361

    Article  CAS  Google Scholar 

  • Bernard CS, Bordi C, Termine E, Filloux A, de Bentzmann S (2009) Organization and PprB-dependent control of the Pseudomonas aeruginosa tad Locus, involved in Flp pilus biology. J Bacteriol 191:1961–1973

    Article  CAS  Google Scholar 

  • Brencic A, Lory S (2009) Determination of the regulon and identification of novel mRNA targets of Pseudomonas aeruginosa RsmA. Mol Microbiol 72:612–632

    Article  CAS  Google Scholar 

  • Burrowes E, Baysse C, Adams C, O'Gara F (2006) Influence of the regulatory protein RsmA on cellular functions in Pseudomonas aeruginosa PAO1, as revealed by transcriptome analysis. Microbiology 152:405–418

    Article  CAS  Google Scholar 

  • Buysens S, Heungens K, Poppe J, Hofte M (1996) Involvement of pyochelin and pyoverdin in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol 62:865–871

    CAS  Google Scholar 

  • Cao YR, Wang Q, Jin RX, Jiang Y, Lai HX, He WX, Xu LH, Jiang CL (2010) Planosporangium mesophilum sp. nov., isolated from rhizosphere soil of Bletilla striata. Int J Syst Evol Microbiol 61:1330–1333

    Article  Google Scholar 

  • Cianciotto NP (2005) Type II secretion: a protein secretion system for all seasons. Trends Microbiol 13:581–588

    Article  CAS  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol R 61:47–64

    CAS  Google Scholar 

  • Dodey GP, Bolivar R, Fainstein V, Jadeja L (1983) Infections caused by Pseudomonas aeruginosa. Rev Infect Dis 5:279–313

    Article  Google Scholar 

  • Dubern JF, Diggle SP (2008) Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Mol Biosyst 4:882–888

    Article  CAS  Google Scholar 

  • Duzan HM, Mabood F, Souleimanov A, Smith DL (2006) Nod Bj-V (C18:1, MeFuc) production by Bradyrhizobium japonicum (USDA110, 532C) at suboptimal growth temperatures. J Plant Physiol 163:107–111

    Article  CAS  Google Scholar 

  • Förster-Fromme K, Jendrossek D (2008) Biochemical characterization of isovaleryl-CoA dehydrogenase (LiuA) of Pseudomonas aeruginosa and the importance of liu genes fora functional catabolic pathway of methyl-branched compounds. FEMS Microbiol Lett 286:78–84

    Article  Google Scholar 

  • Ghai R, Hain T, Chakraborty T (2004) GenomeViz: visualizing microbial genomes. BMC Bioinformatics 5:198

    Article  Google Scholar 

  • Hardalo C, Edberg SC (1997) Pseudomonas aeruginosa: assessment of risk from drinking water. Crit Rev Microbiol 23:47–75

    Article  CAS  Google Scholar 

  • Hauser AR (2009) The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol 7:654–665

    Article  CAS  Google Scholar 

  • Hoboth C, Hoffmann R, Eichner A, Henke C, Schmoldt S, Imhof A, Heesemann J, Hogardt M (2009) Dynamics of adaptive microevolution of hypermutable Pseudomonas aeruginosa during chronic pulmonary infection in patients with cystic fibrosis. J Infect Dis 200:118–130

    Article  CAS  Google Scholar 

  • Hoffman LR, Richardson AR, Houston LS, Kulasekara HD, Martens-Habbena W, Klausen M, Burns JL, Stahl DA, Hassett DJ, Fang FC, Miller SI (2010) Nutrient availability as a mechanism for selection of antibiotic tolerant Pseudomonas aeruginosa within the CF airway. PLoS Pathog 6:e1000712

    Article  Google Scholar 

  • Holloway BW (1955) Genetic recombination in Pseudomonas aeruginosa. J Gen Microbiol 13:572–581

    Article  CAS  Google Scholar 

  • Huang X, Zhu D, Ge Y, Hu H, Zhang X, Xu Y (2004) Identification and characterization of pltZ, a gene involved in the repression of pyoluteorin biosynthesis in Pseudomonas sp. M18. FEMS Microbiol Lett 232:197–202

    Article  CAS  Google Scholar 

  • Huang X, Yan A, Zhang X, Xu Y (2006) Identification and characterization of a putative ABC transporter PltHIJKN required for pyoluteorin production in Pseudomonas sp. M18. Gene 376:68–78

    Article  CAS  Google Scholar 

  • Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314

    Google Scholar 

  • Knight CG, Zhang XX, Gunn A, Brenner T, Jackson RW, Giddens SR, Prabhakar S, Zitzmann N, Rainey PB (2010) Testing temperature-induced proteomic changes in the plant-associated bacterium Pseudomonas fluorescens SBW25. Environ Microbiol Rep 2:396–402

    Article  CAS  Google Scholar 

  • Kobayashi I (2001) Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res 29:3742–3756

    Article  CAS  Google Scholar 

  • Kumar RS, Ayyadurai N, Pandiaraja P, Reddy AV, Venkateswarlu Y, Prakash O, Sakthivel N (2005) Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity and biofertilizing traits. J Appl Microbiol 98:145–154

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Marchler-Bauer A, Panchenko AR, Shoemaker BA, Thiessen PA, Geer LY, Bryant SH (2002) CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids Res 30:281–283

    Article  CAS  Google Scholar 

  • Mathee K, Narasimhan G, Valdes C, Qiu X, Matewish JM, Koehrsen M, Rokas A, Yandava CN, Engels R, Zeng E, Olavarietta R, Doud M, Smith RS, Montgomery P, White JR, Godfrey PA, Kodira C, Birren B, Galagan JE, Lory S (2008) Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci U S A 105:3100–3105

    Article  CAS  Google Scholar 

  • Mira NP, Madeira A, Moreira AS, Coutinho CP, Sá-Correia I (2011) Genomic expression analysis reveals strategies of Burkholderia cenocepacia to adapt to cystic fibrosis patients' airways and antimicrobial therapy. PLoS One 6:e28831

    Article  CAS  Google Scholar 

  • Nouaille S, Even S, Charlier C, Le Loir Y, Cocaign-Bousquet M, Loubière P (2009) Transcriptomic response of Lactococcus lactis in mixed culture with Staphylococcus aureus. Appl Environ Microbiol 75:4473–4482

    Article  CAS  Google Scholar 

  • Palleroni NJ (2010) The Pseudomonas story. Environl Microbiol 12:1377–1383

    Article  CAS  Google Scholar 

  • Poole K, McKay GA (2003) Iron acquisition and its control in Pseudomonas aeruginosa: many roads lead to Rome. Front Biosci 8:d661–686

    Article  CAS  Google Scholar 

  • Pribat A, Blaby IK, Lara-Núñez A, Gregory JF 3rd, de Crécy-Lagard V, Hanson AD (2010) FolX and FolM are essential for tetrahydromonapterin synthesis in Escherichia coli and Pseudomonas aeruginosa. J Bacteriol 192:475–482

    Article  CAS  Google Scholar 

  • Rodríguez-Rojas A, Mena A, Martin S, Borrell N, Oliver A, Blázquez J (2009) Inactivation of the hmgA gene of Pseudomonas aeruginosa leads to pyomelanin hyperproduction, stress resistance and increased persistence in chronic lung infection. Microbiology 155:1050–1057

    Article  Google Scholar 

  • Salunkhe P, Töpfer T, Buer J, Tümmler B (2005) Genome-wide transcriptional profiling of the steady-state response of Pseudomonas aeruginosa to hydrogen peroxide. J Bacteriol 187:2565–2572

    Article  CAS  Google Scholar 

  • Shao Y, He X, Harrison EM, Tai C, Ou HY, Rajakumar K, Deng Z (2010) mGenomeSubtractor: a web-based tool for parallel in silico subtractive hybridization analysis of multiple bacterial genomes. Nucleic Acids Res 38(Suppl):W194–200

    Article  CAS  Google Scholar 

  • Silby MW, Cerdeño-Tárraga AM, Vernikos GS, Giddens SR, Jackson RW, Preston GM, Zhang XX, Moon CD, Gehrig SM, Godfrey SA, Knight CG, Malone JG, Robinson Z, Spiers AJ, Harris S, Challis GL, Yaxley AM, Harris D, Seeger K, Murphy L, Rutter S, Squares R, Quail MA, Saunders E, Mavromatis K, Brettin TS, Bentley SD, Hothersall J, Stephens E, Thomas CM, Parkhill J, Levy SB, Rainey PB, Thomson NR (2009) Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol 10:R51

    Article  Google Scholar 

  • Small DA, Chang W, Toghrol F, Bentley WE (2007) Comparative global transcription analysis of sodium hypochlorite, peracetic acid, and hydrogen peroxide on Pseudomonas aeruginosa. Appl Microbiol Biotechnol 76:1093–1105

    Article  CAS  Google Scholar 

  • Smillie CS, Smith MB, Friedman J, Cordero OX, David LA, Alm EJ (2011) Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480:241–244

    Article  CAS  Google Scholar 

  • Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, D'Argenio DA, Miller SI, Ramsey BW, Speert DP, Moskowitz SM, Burns JL, Kaul R, Olson MV (2006) Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 103:8487–8492

    Article  CAS  Google Scholar 

  • Söderberg MA, Rossier O, Cianciotto NP (2004) The type II protein secretion system of Legionella pneumophila promotes growth at low temperatures. J Bacteriol 186:3712–3720

    Article  Google Scholar 

  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964

    Article  CAS  Google Scholar 

  • Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278:631–637

    Article  CAS  Google Scholar 

  • Termine E, Michel GP (2009) Transcriptome and secretome analyses of the adaptive response of Pseudomonas aeruginosa to suboptimal growth temperature. Int Microbiol 12:7–12

    CAS  Google Scholar 

  • Werck-Reichhart D, Feyereisen R (2000) Cytochromes P450: a success story. Genome Biol 1: REVIEWS3003

  • Wilderman PJ, Vasil AI, Johnson Z, Wilson MJ, Cunliffe HE, Lamont IL, Vasil ML (2001) Characterization of an endoprotease (PrpL) encoded by a PvdS-regulated gene in Pseudomonas aeruginosa. Infect Immun 69:5385–5394

    Article  CAS  Google Scholar 

  • Winsor GL, Van Rossum T, Lo R, Khaira B, Whiteside MD, Hancock RE, Brinkman FS (2009) Pseudomonas Genome Database: facilitating user-friendly, comprehensive comparisons of microbial genomes. Nucleic Acids Res 37:D483–488

    Article  CAS  Google Scholar 

  • Winstanley C, Langille MG, Fothergill JL, Kukavica-Ibrulj I, Paradis-Bleau C, Sanschagrin F, Thomson NR, Winsor GL, Quail MA, Lennard N, Bignell A, Clarke L, Seeger K, Saunders D, Harris D, Parkhill J, Hancock RE, Brinkman FS, Levesque RC (2009) Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool Epidemic Strain of Pseudomonas aeruginosa. Genome Res 19:12–23

    Article  CAS  Google Scholar 

  • Wu DQ, Ye J, Ou HY, Wei X, Huang X, He YW, Xu Y (2011) Genomic analysis and temperature-dependent transcriptome profiles of the rhizosphere originating strain Pseudomonas aeruginosa M18. BMC Genomics 12:438

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Hang Wu for help with drawing the genome circular map and ShanghaiBio Corporation for assistance with the microarray experiment and analysis. This research was carried out with support of the National Key Basic Research Program (973 Program, no. 2009CB118906), the Shanghai Leading Academic Discipline Project (no. B203) and the Shanghai Jiao Tong University Graduate Innovation Training Project (no. Z-080-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuquan Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1801 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, DQ., Li, Y. & Xu, Y. Comparative analysis of temperature-dependent transcriptome of Pseudomonas aeruginosa strains from rhizosphere and human habitats. Appl Microbiol Biotechnol 96, 1007–1019 (2012). https://doi.org/10.1007/s00253-012-4466-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4466-5

Keywords

Navigation