Applied Microbiology and Biotechnology

, Volume 96, Issue 6, pp 1383–1394 | Cite as

Lactic acid bacteria producing B-group vitamins: a great potential for functional cereals products

  • Vittorio Capozzi
  • Pasquale Russo
  • María Teresa Dueñas
  • Paloma López
  • Giuseppe SpanoEmail author


Wheat contains various essential nutrients including the B group of vitamins. However, B group vitamins, normally present in cereals-derived products, are easily removed or destroyed during milling, food processing or cooking. Lactic acid bacteria (LAB) are widely used as starter cultures for the fermentation of a large variety of foods and can improve the safety, shelf life, nutritional value, flavor and overall quality of the fermented products. In this regard, the identification and application of strains delivering health-promoting compounds is a fascinating field. Besides their key role in food fermentations, several LAB found in the gastrointestinal tract of humans and animals are commercially used as probiotics and possess generally recognized as safe status. LAB are usually auxotrophic for several vitamins although certain strains of LAB have the capability to synthesize water-soluble vitamins such as those included in the B group. In recent years, a number of biotechnological processes have been explored to perform a more economical and sustainable vitamin production than that obtained via chemical synthesis. This review article will briefly report the current knowledge on lactic acid bacteria synthesis of vitamins B2, B11 and B12 and the potential strategies to increase B-group vitamin content in cereals-based products, where vitamins-producing LAB have been leading to the elaboration of novel fermented functional foods. In addition, the use of genetic strategies to increase vitamin production or to create novel vitamin-producing strains will be also discussed.


Bread B-group vitamins Lactobacillus plantarum Lactobacillus sanfranciscensis 



This work was founded by the Italian Ministry for Development in the framework of the “Industria 2015 Bando Nuove Tecnologie per il Made in Italy—Realizzazione di una innovativa pasta alimentare funzionale arricchita di componenti bioattivi e probiotici.” This paper is dedicated to the memory of our friend and colleague, Dr. Natale di Fonzo.


  1. Bacher A, Eberhardt S, Eisenreich W, Fischer M, Herz S, Illarionov B, Kis K, Richter G (2001) Biosynthesis of riboflavin. Vitam Horm 61:1–49CrossRefGoogle Scholar
  2. Bailey LB, Rampersaud GC, Kauwell GP (2003) Folic acid supplements and fortification affect the risk for neural tube defects, vascular disease and cancer: evolving science. J Nutr 133:1961–1968Google Scholar
  3. Batifoulier F, Verny M-A, Chanliaud E, Remesy C, Demigne C (2006) Variability of B vitamin concentrations in wheat grain, milling fractions and bread products. Eur J Agron 25:163–169CrossRefGoogle Scholar
  4. Beck WS (2001) Cobalamin (Vitamin B12). In: Rucker RB, Suttie JW, McCormick DB, Machlin LJ (eds) Handbook of vitamins, 3rd edn. Marcel Dekker Inc, New York, pp 463–512Google Scholar
  5. Blanck HM, Bowman BA, Serdula MK, Khan LK, Kohn W, Woodruff BA (2002) Angular stomatitis and riboflavin status among adolescent Bhutanese refugees living in Southeastern Nepal. Am J Clin Nutr 76:430–435Google Scholar
  6. Bor MV, Lydeking-Olesen E, Møller J, Nexø E (2006) A daily intake of approximately 6 μg vitamin B-12 appears to saturate all the vitamin B-12-related variables in Danish postmenopausal women. Am J Clin Nutr 83:52–58Google Scholar
  7. Bove P, Gallone A, Russo P, Capozzi V, Albenzio M, Spano G, Fiocco D (2012) Probiotic features of Lactobacillus plantarum mutant strains. Appl Microbiol Biotechnol. 96:431–441Google Scholar
  8. Burgess C, O’ Connell-Motherway M, Sybesma W, Hugenholtz J, van Sinderen D (2004) Riboflavin production in Lactococcus lactis: potential for in situ production of vitamin-enriched foods? Appl Environ Microbiol 70:5769–5777CrossRefGoogle Scholar
  9. Burgess CM, Smid EJ, Rutten G, van Sinderen D (2006) A general method for selection of riboflavin-overproducing food grade micro-organisms. Microb Cell Factories 5:24CrossRefGoogle Scholar
  10. Burgess CM, Smid EJ, van Sinderen D (2009) Bacterial vitamin B2, B11 and B12 overproduction: an overview. Int J Food Micr 133:1–7CrossRefGoogle Scholar
  11. Capozzi V, Menga V, Digesu AM, De Vita P, van Sinderen D, Cattivelli L, Fares C, Spano G (2011) Biotechnological production of vitamin B2-enriched bread and pasta. J Agric Food Chem 59:8013–8020CrossRefGoogle Scholar
  12. Capozzi V, Russo P, Fragasso M, De Vita P, Fiocco D and Spano G (2012) Biotechnology and pasta-making: lactic acid bacteria as a new driver of innovation. Front Microbio 3:94Google Scholar
  13. Coquard D, Huecas M, Ott M, van Dijl JM, van Loon AP, Hohmann HP (1997) Molecular cloning and characterisation of the ribC gene from Bacillus subtilis: a point mutation in ribC results in riboflavin overproduction. Mol Gen Genet 254:81–84CrossRefGoogle Scholar
  14. Cordain L (1999) Cereal grains: humanity’s double-edged sword. In: Simopoulos AP (ed) Evolutionary aspects of nutrition and health. Diet, exercise, genetics and chronic disease. World Rev Nutr Diet vol 84. Karger, Basel, pp 19–73Google Scholar
  15. Crittenden RG, Martinez NR, Plaune MJ (2002) Synthesis and utilisation of folate by yoghurt starter cultures and probiotic bacteria. Int J Food Microbiol 80:217–222CrossRefGoogle Scholar
  16. Cuskelly GJ, Mooney KM, Young IS (2007) Folate and vitamin B12: friendly or enemy nutrients for the elderly. Proc Nutr Soc 66:548–558CrossRefGoogle Scholar
  17. EFSA (2007) Opinion of the scientific committee on a request from EFSA on the introduction of a qualified presumption of safety (QPS) approach for assessment of selected microorganisms referred to EFSA. EFSA J 587:1–16Google Scholar
  18. European Food Information Council. MINI GUIDE 06/2006,
  19. Finglas PM, Wright AJ, Wolfe CA, Hart DJ, Wright DM, Dainty JR (2003) Is there more to folates than neural-tube defects? Proc Nutr Soc 62:591–598CrossRefGoogle Scholar
  20. Flynn A, Moreiras O, Stehle P, Fletcher RJ, Muller DJ, Rolland V (2003) Vitamins and minerals: a model for safe addition to foods. Eur J Nutr 42:118–130CrossRefGoogle Scholar
  21. Food and Drug Administration (1996) Food standards: amendment of standards of identity for enriched grain products to require addition of folic acid. Fed Regist 61:8781–8807Google Scholar
  22. Gobbetti M, Corsetti A (1997) Lactobacillus sanfrancisco a key sourdough lactic acid bacterium: a review. Food Microbiol 14:175–187CrossRefGoogle Scholar
  23. Gobbetti M, De Angelis M, Corsetti A, Di Cagno R (2005) Biochemistry and physiology of sourdough lactic acid bacteria. Trends Food Sci Technol 16:57–69CrossRefGoogle Scholar
  24. Herranen M, Kariluoto S, Edelmann M, Piironen V, Ahvenniemi K, Iivonen V, Salovaara H, Korhola M (2010) Isolation and characterization of folate-producing bacteria from oat bran and rye flakes. Int J Food Microbiol 142:277–285CrossRefGoogle Scholar
  25. Hugenholtz J, Smid EJ (2002) Nutraceutical production with food-grade microorganisms. Curr Opin Biotechnol 13:497–507CrossRefGoogle Scholar
  26. Jägerstad M, Piironen V, Walker C, Ros G, Carnovale E, Holasova M, Nau H (2005) Increasing natural food folates through bioprocessing and biotechnology. Trends Food Sci Tech 16:298–306CrossRefGoogle Scholar
  27. Kariluoto S, Vahteristo L, Salovaara H, Katina K, Liukkonen K-H, Piironen V (2004) Effect of baking method and fermentation on folate content of rye and wheat breads. Cereal Chem 81:134–139CrossRefGoogle Scholar
  28. Kariluoto S, Aittamaa M, Korhola M, Salovaara H, Vahteristo L, Piironen V (2006) Effects of yeasts and bacteria on the levels of folates in rye sourdoughs. Int J Food Microbiol 106:137–143CrossRefGoogle Scholar
  29. Kariluoto S, Edelmann M, Piironen V (2010) Effect of environment on folate contents in wheat genotypes. J Agric Food Chem 58:9324–9331CrossRefGoogle Scholar
  30. Katan MB, Boekschoten MV, Connor WE, Mensink RP, Seidell J, Vessby B, Willett W (2009) Which are the greatest recent discoveries and the greatest future challenges in nutrition? Eur J Clin Nutr 63:2–10CrossRefGoogle Scholar
  31. Kil YV, Mironov VN, Gorishin I, Kreneva RA, Perumov DA (1992) Riboflavin operon of Bacillus subtilis: unusual symmetric arrangement of the regulatory region. Mol Gen Genet 233:483–486CrossRefGoogle Scholar
  32. Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MW, Stiekema W, Lankhorst RM, Bron PA, Hoffer SM, Groot MN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 100:1990–1995CrossRefGoogle Scholar
  33. Kumar S, Ghosh K, Das KC (1989) Serum B12 levels in an Indian population: an evaluation of three assay methods. Med Lab Sci 46:120–126Google Scholar
  34. Laiño JE, LeBlanc JG, Savoy de Giori G (2012) Production of natural folates by lactic acid bacteria starter cultures isolated from artisanal Argentinean yogurts Canadian. J Microbiol 58:581–588Google Scholar
  35. LeBlanc JG, Burgess C, Sesma F, Savoy de Giori G, van Sinderen D (2005) Ingestion of milk fermented by genetically modified Lactococcus lactis improves the riboflavin status of deficient rats. J Dairy Sci 88:3435–3442CrossRefGoogle Scholar
  36. LeBlanc JG, Rutten G, Bruinenberg P, Sesma F, de Giori GS, Smid EJ (2006) A novel dairy product fermented with Propionibacterium freudenreichii improves the riboflavin status of deficient rats. Nutrition 22:645–651CrossRefGoogle Scholar
  37. LeBlanc JG, Savoy de Giori G, Smid EJ, Hugenholtz J, Sesma F (2007) Folate production by lactic acid bacteria and other food-grade microorganisms. In: Méndez-Vilas A (ed) Communicating current research and educational topics and trends in applied microbiology. Formatex Research Center, Badajoz, pp 329–339Google Scholar
  38. LeBlanc JG, Taranto MP, Molina V, Sesma F (2010a) B-group vitamins production by probiotic lactic acid bacteria. In: Mozzi F, Raya R, Vignolo G (eds) Biotechnology of lactic acid bacteria: novel applications. Wiley-Blackwell, Ames, pp 211–232CrossRefGoogle Scholar
  39. LeBlanc JG, Sybesma W, Starrenburg M, Sesma F, de Vos WM, de Giori GS, Hugenholtz J (2010b) Supplementation with engineered Lactococcus lactis improves the folate status in deficient rats. Nutrition 26:835–841CrossRefGoogle Scholar
  40. LeBlanc JG, van Sinderen D, Hugenholtz J, Piard J-C, Sesma F, Savoy de Giori G (2010c) Risk assessment of genetically modified lactic acid bacteria using the concept of substantial equivalence. Curr Microbiol 61:590–595CrossRefGoogle Scholar
  41. LeBlanc JG, Laiño JE, del Valle MJ, Vannini V, van Sinderen D, Taranto MP, de Valdez GF, de Giori GS, Sesma F (2011) B-group vitamin production by lactic acid bacteria—current knowledge and potential applications. J Appl Microbiol 111:1297–1309CrossRefGoogle Scholar
  42. Leklem JE (2001) Vitamin B6. In: Rucker RB, Suttie JW, McCormick DB, Machlin LJ (eds) Handbook of vitamins, 3rd edn. Marcel Dekker Inc, New York, pp 339–396Google Scholar
  43. Lin MY, Young CM (2000) Folate levels in cultures of lactic acid bacteria. Int Dairy J 10:409–413CrossRefGoogle Scholar
  44. Massey V (2000) The chemical and biological versatility of riboflavin. Biochem Soc Trans 28:283–296CrossRefGoogle Scholar
  45. Morita H, Toh H, Fukuda S, Horikawa H, Oshima K, Suzuki T, Murakami M, Hisamatsu S, Kato Y, Takizawa T, Fukuoka H, Yoshimura T, Itoh K, O’Sullivan DJ, McKay LL, Ohno H, Kikuchi J, Masaoka T, Hattori M (2008) Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production. DNA Res 15:151–161CrossRefGoogle Scholar
  46. Nor NM, Mohamad R, Foo HL, Rahim RA (2010) Improvement of folate biosynthesis by lactic acid bacteria using response surface methodology. Food Tech Biotechnol 48:243–250Google Scholar
  47. Food and Nutrition Board (1998) Folate. In: Dietary reference intakes: thiamin, riboflavin, niacin, vitamin B6, vitamin B12, pantothenic acid, biotin, folate and choline. National Academies Press, Washington, pp 196–305Google Scholar
  48. O’Brien MM, Kiely M, Harrington KE, Robson PJ, Strain JJ, Flynn A (2001) The North/South Ireland food consumption survey: vitamin intakes in 18–64-year-old adults. Publ Health Nutr 4:1069–1079Google Scholar
  49. Osseyi ES, Wehling RL, Albrecht JA (2001) HPLC determination of stability and distribution of added folic acid and some endogenous folates during breadmaking. Cereal Chem 78:375–378CrossRefGoogle Scholar
  50. Perkins J, Sloma A, Hermann T, Theriault K, Zachgo E, Erdenberger T, Hannett N, Chatterjee N, Williams V II, Rufo GA Jr, Hatch R, Pero J (1999) Genetic engineering of Bacillus subtilis for the commercial production of riboflavin. J Ind Microbiol Biotechnol 22:8–18CrossRefGoogle Scholar
  51. Piao Y, Yamashita M, Kawaraichi N, Asegawa R, Ono H, Murooka Y (2004) Production of vitamin B12 in genetically engineered Propionibacterium freudenreichii. J Biosci Bioeng 98:167–173Google Scholar
  52. Powers HJ (2003) Riboflavin (vitamin B2) and health. Am J Clin Nutr 77:1352–1360Google Scholar
  53. Rao DR, Reddy AV, Pulusani SR, Cornwell PE (1984) Biosynthesis and utilization of folic acid and vitamin B12 by lactic acid cultures in skim milk. J Dairy Sci 67:1169–1174CrossRefGoogle Scholar
  54. Rivlin RS, Pinto JT (2001) Riboflavin (vitamin B2). In: Rucker RB, Suttie JW, McCormick DB, Machlin LJ (eds) Handbook of vitamins, 3rd edn. Marcel Dekker Inc, New York, pp 255–275Google Scholar
  55. Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS (2003) Comparative genomics of the vitamin B12 metabolism and regulation in prokaryotes. J Biol Chem 278:41148–41159CrossRefGoogle Scholar
  56. Rohner F, Zimmermann MB, Wegmueller R, Tschannen AB, Hurrell RF (2007) Mild riboflavin deficiency is highly prevalent in school-age children but does not increase risk for anaemia in Côte d’Ivoire. Br J Nutr 97:970–976CrossRefGoogle Scholar
  57. Rossi M, Amaretti A, Raimondi S (2011) Folate production by probiotic bacteria. Nutrients 3:118–134CrossRefGoogle Scholar
  58. Russo P, López P, Capozzi V, Palencia P, Dueñas MT, Spano G, Fiocco D (2012) Beta-glucans improve growth, viability and colonization of probiotic microorganisms. Int J Mol Sci 13:6026–6039CrossRefGoogle Scholar
  59. Santos F, Vera JL, Lamosa P, de Valdez GF, de Vos W, Santos H, Sesma F, Hugenholtz J (2007) Pseudovitamin B12 is the corrinoid produced by Lactobacillus reuteri CRL1098 under anaerobic conditions. FEBS Lett 581:4865–4870CrossRefGoogle Scholar
  60. Santos F, Wegkamp A, de Vos WM, Smid EJ, Hugenholtz J (2008a) High folate production in fermented foods by the B12 producer Lactobacillus reuteri JCM1112. Appl Environ Microbiol 74:3291–3294CrossRefGoogle Scholar
  61. Santos F, Vera JL, van der Heijden R, Valdez G, de Vos WM, Sesma F, Hugenholtz J (2008b) The complete coenzyme B12 biosynthesis gene cluster of Lactobacillus reuteri CRL1098. Microbiology 154:81–93CrossRefGoogle Scholar
  62. Scott JM (1999) Folate and vitamin B12. Proc Nutr Soc 58:441–448CrossRefGoogle Scholar
  63. Seidametova EA, Shakirzianova MR, Ruzieva DM, Guliamova TG (2004) Isolation of cobalt-resistant strains of propionic acid bacteria, potent producers of vitamin B12. Appl Biochem Microbiol 40:560–562CrossRefGoogle Scholar
  64. Selhub J (2002) Folate, vitamin B12 and vitamin B6 and one carbon metabolism. J Nutr Health Aging 6:39–42Google Scholar
  65. Sriramulu DD, Liang M, Hernandez-Romero D, Raux-Deery E, Lünsdorf H, Parsons JB, Warren MJ, Prentice MB (2008) Lactobacillus reuteri DSM 20016 produces cobalamin-dependent diol dehydratase in metabolosomes and metabolizes 1,2-propanediol by disproportionation. J Bacteriol 190:4559–4567CrossRefGoogle Scholar
  66. Stanton C, Ross RP, Fitzgerald GF, Sinderen DV (2005) Fermented functional foods based on probiotics and their biogenic metabolites. Curr Opin Biotechnol 16:198–203CrossRefGoogle Scholar
  67. Sybesma W, Starrenburg M, Tijsseling L, Hoefnagel MH, Hugenholtz J (2003a) Effects of cultivation conditions on folate production by lactic acid bacteria. Appl Environ Microbiol 69:4542–4548CrossRefGoogle Scholar
  68. Sybesma W, Starrenburg M, Kleerebezem M, Mierau I, de Vos WM, Hugenholtz J (2003b) Increased production of folate by metabolic engineering of Lactococcus lactis. Appl Environ Microbiol 69:3069–3076CrossRefGoogle Scholar
  69. Sybesma W, Burgess C, Starrenburg M, van Sinderen D, Hugenholtz J (2004) Multivitamin production in Lactococcus lactis using metabolic engineering. Metab Eng 6:109–115CrossRefGoogle Scholar
  70. Taboada B, Verde C, Merino E (2010) High accuracy operon prediction method based on STRING database scores. Nucleic Acids Res 38:e130CrossRefGoogle Scholar
  71. Tanphaichitr V (2001) Thiamine. In: Rucker RB, Suttie JW, McCormick DB, Machlin LJ (eds) Handbook of vitamins, 3rd edn. Marcel Dekker Inc., New York, pp 275–310Google Scholar
  72. Taranto MP, Vera JL, Hugenholtz J, De Valdez GF, Sesma F (2003) Lactobacillus reuteri CRL1098 produces cobalamin. J Bacteriol 185:5643–5647CrossRefGoogle Scholar
  73. Tucker KL, Olson B, Bakun P, Dallal GE, Selhub J, Rosenberg IH (2004) Breakfast cereal fortified with folic acid, vitamin B-6, and vitamin B-12 increases vitamin concentrations and reduces homocysteine concentrations: a randomized trial. Am J Clin Nutr 79:805–811Google Scholar
  74. Vogel RF, Pavlovic M, Ehrmann MA, Wiezer A, Liesegang H, Offschanka S, Voget S, Angelov A, Böcker G, Liebl W (2011) Genomic analysis reveals Lactobacillus sanfranciscensis as stable element in traditional sourdoughs. Microb Cell Factories 10:S6CrossRefGoogle Scholar
  75. Watanabe F (2007) Vitamin B12 sources and bioavailability. Exp Biol Med 232:1266–1274CrossRefGoogle Scholar
  76. Wegkamp A (2008) Modulation of folate production in lactic acid bacteria. PhD thesis. Wageningen, The Netherlands: Wageningen UniversityGoogle Scholar
  77. Wegkamp A, van Oorschot W, de Vos WM, Smid EJ (2007) Characterization of the role of para- aminobenzoic acid biosynthesis in folate production by Lactococcus lactis. Appl Environ Microbiol 73:2673–2681CrossRefGoogle Scholar
  78. Wels M, Francke C, Kerkhoven R, Kleerebezem M, Siezen RJ (2006) Predicting cis acting elements of Lactobacillus plantarum by comparative genomics with different taxonomic subgroups. Nucleic Acids Res 34:1947–1958CrossRefGoogle Scholar
  79. Zhu T, Pan Z, Domagalski N, Koepsel R, Ataai MM, Domach MM (2005) Engineering of Bacillus subtilis for enhanced total synthesis of folic acid. Appl Environ Microbiol 71:7122–7129CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Vittorio Capozzi
    • 1
    • 4
  • Pasquale Russo
    • 1
    • 4
  • María Teresa Dueñas
    • 2
  • Paloma López
    • 3
  • Giuseppe Spano
    • 1
    • 5
    Email author
  1. 1.Department of Agriculture, Food and Environment SciencesUniversity of FoggiaFoggiaItaly
  2. 2.Department of Applied ChemistryUniversity of Basque Country (UPV/EHU)DonostiaSpain
  3. 3.Department of Molecular Microbiology and Infection BiologyCentro de Investigaciones Biológicas (CIB)MadridSpain
  4. 4.Promis Biotech srlFoggiaItaly
  5. 5.Department of Agriculture, Food and Environment SciencesUniversity of FoggiaFoggiaItaly

Personalised recommendations