Skip to main content
Log in

Effects of NADH kinase on NADPH-dependent biotransformation processes in Escherichia coli

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Sufficient supply of NADPH is one of the most important factors affecting the productivity of biotransformation processes. In this study, construction of an efficient NADPH-regenerating system was attempted using direct phosphorylation of NADH by NADH kinase (Pos5p) from Saccharomyces cerevisiae for producing guanosine diphosphate (GDP)-l-fucose and ε-caprolactone in recombinant Escherichia coli. Expression of Pos5p in a fed-batch culture of recombinant E. coli producing GDP-l-fucose resulted in a maximum GDP-l-fucose concentration of 291.5 mg/l, which corresponded to a 51 % enhancement compared with the control strain. In a fed-batch Baeyer–Villiger (BV) oxidation of cyclohexanone using recombinant E. coli expressing Pos5p, a maximum ε-caprolactone concentration of 21.6 g/l was obtained, which corresponded to a 96 % enhancement compared with the control strain. Such an increase might be due to the enhanced availability of NADPH in recombinant E. coli expressing Pos5p. These results suggested that efficient regeneration of NADPH was possible by functional expression of Pos5p in recombinant E. coli, which can be applied to other NADPH-dependent biotransformation processes in E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderlund M, Nissen TL, Nielsen J, Villadsen J, Rydstrom J, Hahn-Hägerdal B, Kielland-Brandt MC (1999) Expression of the Escherichia coli pntA and pntB genes, encoding nicotinamide nucleotide transhydrogenase, in Saccharomyces cerevisiae and its effect on product formation during anaerobic glucose fermentation. Appl Environ Microbiol 65:2333–2340

    CAS  Google Scholar 

  • Chin JW, Khankal R, Monroe CA, Maranas CD, Cirino PC (2009) Analysis of NADPH supply during xylitol production by engineered Escherichia coli. Biotechnol Bioeng 102:209–220

    Article  CAS  Google Scholar 

  • De Mey M, De Maeseneire S, Soetaert W, Vandamme E (2007) Minimizing acetate formation in E. coli fermentations. J Ind Microbiol Biotechnol 34:689–700

    Article  Google Scholar 

  • Drepper T, Eggert T, Hummel W, Leggewie C, Pohl M, Rosenau F, Wilhelm S, Jaeger KE (2006) Novel biocatalysts for white biotechnology. Biotechnol J 1:777–786

    Article  CAS  Google Scholar 

  • Duetz WA, van Beilen JB, Witholt B (2001) Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. Curr Opin Biotechnol 12:419–425

    Article  CAS  Google Scholar 

  • Han NS, Kim TJ, Park YC, Kim J, Seo JH (2012) Biotechnological production of human milk oligosaccharides. Biotechnol Adv (in press).

  • Hou J, Vemuri G, Bao X, Olsson L (2009) Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl Microbiol Biotechnol 82:909–919

    Article  CAS  Google Scholar 

  • Kabus A, Georgi T, Wendisch V, Bott M (2007) Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves L-lysine formation. Appl Microbiol Biotechnol 75:47–53

    Article  CAS  Google Scholar 

  • Kawai S, Mori S, Mukai T, Hashimoto W, Murata K (2001) Molecular characterization of Escherichia coli NAD kinase. Eur J Biochem 268:4359–4365

    Article  CAS  Google Scholar 

  • Kawai S, Murata K (2008) Structure and function of NAD kinase and NADP phosphatase: key enzymes that regulate the intracellular balance of NAD(H) and NADP(H). Biosci Biotechnol Biochem 72:919–930

    Article  CAS  Google Scholar 

  • Kwon DH, Kim MD, Lee TH, Oh YJ, Ryu YW, Seo JH (2006) Elevation of glucose 6-phosphate dehydrogenase activity increases xylitol production in recombinant Saccharomyces cerevisiae. J Mol Catal B: Enzymatic 43:86–89

    Article  CAS  Google Scholar 

  • Laemmli U (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lee HC, Kim JS, Jang W, Kim SY (2009a) Thymidine production by overexpressing NAD+ kinase in an Escherichia coli recombinant strain. Biotechnol Lett 31:1929–1936

    Article  CAS  Google Scholar 

  • Lee HC, Kim JS, Jang W, Kim SY (2010) High NADPH/NADP+ ratio improves thymidine production by a metabolically engineered Escherichia coli strain. J Biotechnol 149:24–32

    Article  CAS  Google Scholar 

  • Lee WH, Chin YW, Han NS, Kim MD, Seo JH (2011) Enhanced production of GDP-l-fucose by overexpression of NADPH regenerator in recombinant Escherichia coli. Appl Microbiol Biotechnol 91:967–976

    Article  CAS  Google Scholar 

  • Lee WH, Han NS, Park YC, Seo JH (2009b) Modulation of guanosine 5'-diphosphate-d-mannose metabolism in recombinant Escherichia coli for production of guanosine 5'-diphosphate-l-fucose. Bioresour Technol 100:6143–6148

    Article  CAS  Google Scholar 

  • Lee WH, Park JB, Park K, Kim MD, Seo JH (2007) Enhanced production of ε-caprolactone by overexpression of NADPH-regenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone monooxygenase gene. Appl Microbiol Biotechnol 76:329–338

    Article  CAS  Google Scholar 

  • Leisch H, Morley K, Lau PCK (2011) Baeyer–Villiger monooxygenases: more than just green chemistry. Chem Rev 111:4165–4222

    Article  CAS  Google Scholar 

  • Li ZJ, Cai L, Wu Q, Chen GQ (2009) Overexpression of NAD kinase in recombinant Escherichia coli harboring the phbCAB operon improves poly (3-hydroxybutyrate) production. Appl Microbiol Biotechnol 83:939–947

    Article  CAS  Google Scholar 

  • Lim SJ, Jung YM, Shin HD, Lee YH (2002) Amplification of the NADPH-related genes zwf and gnd for the oddball biosynthesis of PHB in an E. coli transformant harboring a cloned phbCAB operon. J Biosci Bioeng 93:543–549

    CAS  Google Scholar 

  • Nissen TL, Anderlund M, Nielsen J, Villadsen J, Kielland Brandt MC (2001) Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool. Yeast 18:19–32

    Article  CAS  Google Scholar 

  • Outten CE, Culotta VC (2003) A novel NADH kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae. EMBO J 22:2015–2024

    Article  CAS  Google Scholar 

  • Panagiotou G, Grotkjaer T, Hofmann G, Bapat PM, Olsson L (2009) Overexpression of a novel endogenous NADH kinase in Aspergillus nidulans enhances growth. Metab Eng 11:31–39

    Article  CAS  Google Scholar 

  • Park JB (2007) Oxygenase-based whole-cell biocatalysis in organic synthesis. J Microbiol Biotechnol 17:379–392

    CAS  Google Scholar 

  • Sanchez AM, Andrews J, Hussein I, Bennett GN, San KY (2006) Effect of overexpression of a soluble pyridine nucleotide transhydrogenase (UdhA) on the production of poly(3-hydroxybutyrate) in Escherichia coli. Biotechnol Prog 22:420–425

    Article  CAS  Google Scholar 

  • Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E (2004) The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 279:6613–6619

    Article  CAS  Google Scholar 

  • Shianna K, Marchuk D, Strand M (2006) Genomic characterization of POS5, the Saccharomyces cerevisiae mitochondrial NADH kinase. Mitochondrion 6:99–106

    Article  Google Scholar 

  • Strand MK, Stuart GR, Longley MJ, Graziewicz MA, Dominick OC, Copeland WC (2003) POS5 gene of Saccharomyces cerevisiae encodes a mitochondrial NADH kinase required for stability of mitochondrial DNA. Eukaryot Cell 2:809–820

    Article  CAS  Google Scholar 

  • Turner WL, Waller JC, Snedden WA (2005) Identification, molecular cloning and functional characterization of a novel NADH kinase from Arabidopsis thaliana (thale cress). Biochem J 385:217–223

    Article  CAS  Google Scholar 

  • Walton AZ, Stewart JD (2004) Understanding and improving NADPH dependent reactions by nongrowing Escherichia coli cells. Biotechnol Prog 20:403–411

    Article  CAS  Google Scholar 

  • Zhao H, van der Donk WA (2003) Regeneration of cofactors for use in biocatalysis. Curr Opin Biotechnol 14:583–589

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Advanced Biomass R&D Center (ABC) (2011-0031359) and WCU (World Class University) program (R320110001018530) through the National Research Foundation of Korea (NRF) both funded by the Ministry of Education, Science and Technology. This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (2011-0003791). E.H. P. and M.D.K. were supported by the Ministry of Knowledge Economy (MKE) and the Korea Institute for Advancement of Technology (KIAT) through the Research and Development for Regional Industry.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Myoung-Dong Kim or Jin-Ho Seo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, WH., Kim, JW., Park, EH. et al. Effects of NADH kinase on NADPH-dependent biotransformation processes in Escherichia coli . Appl Microbiol Biotechnol 97, 1561–1569 (2013). https://doi.org/10.1007/s00253-012-4431-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4431-3

Keyword

Navigation