Skip to main content

Advertisement

Log in

Microbial rescue to plant under habitat-imposed abiotic and biotic stresses

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Habitat-imposed abiotic and biotic stress is a serious condition and is also a land-degradation problem in arid and semi-arid regions, causing major problem for crop productivity. Most of the cultivable and a least half of irrigated lands around the world are severely affected by environmental stresses. However, in these conditions, there are plant populations successfully adapted and evolutionarily different in their strategy of stress tolerance. Vascular plants do not function as autonomous individuals, but house diverse communities of symbiotic microbes. The role of these microbes can no longer be ignored. Microbial interactions are critical not only for host but also for fungal survival in stressed environments. Plants benefit extensively by harboring these associated microbes; they promote plant growth and confer enhanced resistance to various pathogens by producing antibiotics. To date, improvements in plant quality, production, abiotic and biotic stress resistance, nutrient, and water use have relied largely on manipulating plant genomes by breeding and genetic modification. Increasing evidence indicates that the function of symbiotic microbes seems to parallel more than one of these characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achuo EA, Audenaert K, Meziane H, Höfte M (2004) The salicylic acid-dependent defense pathway is effective against different pathogens in tomato and tobacco. Plant Pathol 53:65–72

    Article  CAS  Google Scholar 

  • Ahlholm JU, Helander M, Lehtimaki S, Wali P, Saikkonen K (2002) Vertically transmitted fungal endophytes: different responses of host—parasite systems to environmental conditions. Oikos 99:173–183

    Article  Google Scholar 

  • Arnold AE, Mejía IC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit Pathogen damage in a tropical tree. Proc Natl Acad Sci U S A 100:15649–15654

    Article  CAS  Google Scholar 

  • Aroca R, Vernieri P, Ruiz-Lozano JM (2008) Mycorrhizal and nonmycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. J Exp Bot 59:2029–2041

    Article  CAS  Google Scholar 

  • Assmann SM (1993) Signal transduction in guard cells. Annu Rev Cell Biol 9:345–375

    Article  CAS  Google Scholar 

  • Assrnann SM (1994) Ins and outs of guard cell ABA receptors. Plant Cell 6:1187–1190

    Google Scholar 

  • Assuero SG, Tognetti JA, Colabelli MR, Agnusdei MG, Petroni EC, Posse MA (2006) Endophyte infection accelerates morpho-physiological responses to water deficit in tall fescue. J Agric Res 49:359–370

    Article  Google Scholar 

  • Bacon CW, De Battista J (1991) Endophytic fungi of grasses. In: Arora DK, Rai B, Mukerji KG, Knudsen GR (eds) Handbook of Applied Mycology. Marcel Dekker, New York, pp 231–256

    Google Scholar 

  • Baker SS, Wllhelm KS, Thomashow MF (1994) The 5’ region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol 24:701–713

    Article  CAS  Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413

    Article  Google Scholar 

  • Barassi CA, Ayrault G, Creus CM, Sueldo RJ, Sobero MT (2006) Seed inoulation with Azospirillum mitigates NaCl effects on lettuce. Sci Hortic 109:8–14

    Article  CAS  Google Scholar 

  • Bauer WD, Mathesius U (2004) Plant responses to bacterial quorum sensing signals. Curr Opin Plant Biol 7:429–433

    Article  CAS  Google Scholar 

  • Bauer WD, Mathesius U, Teplitski M (2005) Eukaryotes deal with bacterial quorum sensing. ASM News 71:129–135

    Google Scholar 

  • Berkitt MA, Campbell CAM, Chamberlain K, Guerrieri E, Hick AJ, Martin JL, Matthes M, Napier JA, Petterson J, Pickett JA, Poppy GM, Pow EM, Pye BJ, Smart LE, Wadhams GH, Wadhams LJ, Woodcock CM (2000) New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc Natl Acad Sci U S A 97:9329–9334

    Article  Google Scholar 

  • Blumwald E, Aharon G, Apse M (2000) Sodium transport in plants. Biochim Biophys Acta 1465:140–151

    Article  CAS  Google Scholar 

  • Bohnert HJ, Nelson DL, Jensen RG (1995) Adaptations to environmental stress. Plant Cell 7:1099–1111

    CAS  Google Scholar 

  • Botella MA, Quesada MA, Kononowlcz AK, Bressan RA, Pllego F, Hasegawa PM, Valpuesta V (1994) Characterization and in situ localization of a salt-induced tomato peroxidase gene. Plant Mol Biol 25:105–114

    Article  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  CAS  Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54

    Article  Google Scholar 

  • Breithaupt H (2003) Back to the roots. Embo Reports 4:10–12

    Article  CAS  Google Scholar 

  • Brosi GB, Nelson JA, McCulley RL, Classen AT, Norby R (2009) PS 45–40: Global change factors interact with fungal endophyte symbiosis to determine tall fescue litter chemistry. The 94th ESA Annual Meeting, PS 45–40

  • Chandok MR, Ytterberg AJ, van Wijk KJ, Klessig DF (2003) The pathogen-inducible nitric oxide synthase (iNOS) in plants is a variant of the P protein of the glycine decarboxylase complex. Cell 113:469–482

    Article  CAS  Google Scholar 

  • Chandra A, Saxena R, Dubey A, Saxena P (2007) Change in phenylalanine ammonia lyase activity and isozyme patterns of polyphenol oxidase and peroxidase by salicylic acid leading to enhance resistance in cowpea against Rhizoctonia solani. Acta Physiol Plant 29:361–367

    Article  CAS  Google Scholar 

  • Chen M, Wei H, Cao J, Liu R, Wang Y, Zheng C (2007) Expression of Bacillus subtilis proAB genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabdopsis. J Biochem Mol Biol 40:396–403

    Article  CAS  Google Scholar 

  • Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants—With special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513

    Article  CAS  Google Scholar 

  • Choudhary DK, Prakash A, Johri BN (2007) Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 47:289–297

    Article  CAS  Google Scholar 

  • Choudhary DK, Johri BN, Prakash A (2008) Volatiles as priming agent that initiate plant growth and defense responses. Curr Sci 94:595–604

    CAS  Google Scholar 

  • Choudhary DK, Sharma KP, Gaur RK (2011) Biotechnological perspectives of microbes in agro-ecosystems. Biotechnol Lett 33:1905–1910

    Article  CAS  Google Scholar 

  • Clarke A, Desikan R, Hurst RD, Hancock JT, Neill SJ (2000) NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J 24:667–677

    Article  CAS  Google Scholar 

  • Clay K, Holah J, Rudgers JA (2005) Herbivores cause a rapid increase in hereditary symbiosis and alter plant community composition. Proc Natl Acad Sci U S A 102:12465–12470

    Article  CAS  Google Scholar 

  • Compant S, Clement C, Sessitsch A (2010) Colonization of plant growth-promoting bacteria in the rhizo- and endosphere of plants: importance, mechanisms involved and future prospects. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Conrath U, Pieterse CMJ, Mauch-mani B (2002) Priming in plant-pathogen interactions. Trends Plant Sci 7:210–216

    Article  CAS  Google Scholar 

  • Crush JR, Popay AJ, Waller J (2004) Effect of different Neotyphodium endophytes on root distribution of a perennial ryegrass (Lolium perenne L.) cultivar. J Agric Res 47:345–349

    Article  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  CAS  Google Scholar 

  • Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    Article  CAS  Google Scholar 

  • Delseny M, Gaubier P, Hull G, Saez-Vasquez J, Gallois P, Raynal M, Cooke R, Grellet F (1994) Nuclear genes expressed during seed desiccation: Relationship with responses to stress. In: Basra AS (ed) Stress-lnduced Gene Expression in Plants. Harwood Academic Publishers, Chur, pp 25–60

    Google Scholar 

  • Dicke M, Agrawal AA, Bruin J (2003) Plants talk but are they deaf? Trends Plant Sci 8:403–405

    Article  CAS  Google Scholar 

  • Dixon RA, Paiva N (1995) Stress-induced phenyl propanoid metabolism. Plant Cell 7:1085–1097

    CAS  Google Scholar 

  • Drigo B, Kowalchuk GA, van Veen JA (2008) Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biol Fertil Soils 44:667–679

    Article  Google Scholar 

  • Drigo B, van Veen JA, Kowalchuk GA (2009) Specific rhizosphere bacterial and fungal groups respond to elevated atmospheric CO2. ISME J 3:1204–1217

    Article  CAS  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci U S A 95:10328–10333

    Article  CAS  Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonizing bacteria stimulating wheat growth in saline soils. Biol Fertil Soil 45:563–571

    Article  Google Scholar 

  • Elmi AA, West CP, Robbins RT, Kirkpatrick TL (2000) Endophyte effects on reproduction of a root-knot nematode (Meloidogyne marylandi) and osmotic adjustment in tall fescue. Grass Forage Sci 55:166–172

    Article  Google Scholar 

  • El-Sharoud WM, Graumann PL (2007) Cold shock proteins aid coupling of transcription and translation in bacteria. Sci Prog 90:15–27

    Article  CAS  Google Scholar 

  • Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of drought stress in common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188

    Article  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling Indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  CAS  Google Scholar 

  • Gatehouse JA (2002) Plant resistance towards insect herbivores: a dynamic interaction. New Phytol 156:145–169

    Article  CAS  Google Scholar 

  • Gavito ME, Curtis PS, Mikkelsen TN, Jakobsen I (2000) Atmospheric CO2 and mycorrhiza effects on biomass allocation and nutrient uptake of nodulated pea (Pisum sativum L.) plants. J Exp Bot 51:1931–1938

    Article  CAS  Google Scholar 

  • Glenn AE, Bacon CW, Price R, Hanlin RT (1996) Molecular phylogeny of Acremonium and its taxonomic implications. Mycologia 88:369–383

    Article  CAS  Google Scholar 

  • Glick BR (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Goldstein J, Pollitt NS, Inouye M (1990) Major cold shock protein of Escherichia coli. Proc Natl Acad Sci USA 87:283–287

    Google Scholar 

  • Grǜter D, Schmid B, Brandl H (2006) Influence of plant diversity and elevated atmospheric carbon dioxide levels on belowground bacterial diversity. BMC Microbiol 6:68–74

    Article  CAS  Google Scholar 

  • Haase S, Neumann G, Kania A, Kuzyakov Y, Romheld V, Kandeler E (2007) Elevation of atmospheric CO2 and N nutritional status modify nodulation, nodule-carbon supply, and root exudation of Phaseolus vulgaris L. Soil Biol Biochem 39:2208–2221

    Article  CAS  Google Scholar 

  • Hallmann J, Berg B (2007) Spectrum and population dynamics of bacterial root endophytes. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial Root Endophytes. Springer, Berlin, pp 15–31

    Google Scholar 

  • Hardoim PR, van Overbeek SV, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  CAS  Google Scholar 

  • Hase S, Van Pelt JA, van Loon LC, Pieterse CMJ (2003) Colonization of Arabidopsis roots by Pseudomonas fluorescens primes the plant to produce higher levels of ethylene upon pathogen infection. Physiol Mol Plant Pathol 62:219–226

    Article  CAS  Google Scholar 

  • Heath MC (1998) Apoptosis, programmed cell death and the hypersensitive response. Eur J Plant Pathol 104:117–124

    Article  CAS  Google Scholar 

  • Hebeisen T, Luscher A, Nosberger J (1997) Effects of elevated atmospheric CO2 and nitrogen fertilisation on yield of Trifolium repens and Lolium perenne. Acta Oecol 18:277–284

    Article  Google Scholar 

  • Heil M (2002) Ecological costs of induced resistance. Curr Opin Plant Biol 5:345–350

    Article  Google Scholar 

  • Helldén U, Tottrup C (2008) Regional desertification: a global Synthesis. Global Planet Change 64:169–176

    Article  Google Scholar 

  • Horn G, Hofweber R, Kremer W, Kalbitzer HR (2007) Structure and function of bacterial cold shock proteins. Cell Mol Life Sci 64:1457–1470

    Article  CAS  Google Scholar 

  • Hunger K, Beckering CL, Wiegeshoff F, Graumann PL, Marahiel MA (2006) Cold-induced putative DEAD box RNA helicases CshA and CshB are essential for cold adaptation and interact with Cold Shock Protein B in Bacillus subtilis. J Bacteriol 188:240–248

    Article  CAS  Google Scholar 

  • Hunt MG, Rasmussen S, Newton PCD, Parsons AJ, Newman JA (2005) Near-term impacts of elevated CO2, nitrogen and fungal endophyte infection on perennial ryegrass: growth, chemical composition and alkaloid production. Plant Cell Environ 28:1345–1354

    Article  CAS  Google Scholar 

  • Iavicoli A, Boutet E, Buchela A, Métraux J-P (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with P. fluorescens CHA0. Mol Plant Microbe Interact 16:851–858

    Article  CAS  Google Scholar 

  • Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni-hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677

    Article  CAS  Google Scholar 

  • Ishitani M, Nakamura T, Han SY, Takabe T (1995) Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid. Plant Mol Biol 27:307–315

    Article  CAS  Google Scholar 

  • Jaleel CA, Gopi R, Kishore Kumar A, Manjvanan P, Sankar B, Panneerselvam R (2008) Interactive effects of triadimefon and salt stress on antioxidative status and ajmalicine accumulation in Catharanthus roseus. Acta Physiol Plant 30:287–292

    Article  CAS  Google Scholar 

  • Jaleel CA, Riadh K, Gopi R, Manivannan P, Ines J, Al-Juburi HJ, Changxing Z, Hong-Bo S, Panneerselvam R (2009) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol Plant 31:427–436

    Article  CAS  Google Scholar 

  • Jiang W, Hou Y, Inouye M (1997) CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J Biol Chem 272:196–202

    Article  CAS  Google Scholar 

  • Karlson D, Nakaminami K, Toyomasu T, Imai R (2002) A cold-regulated nucleic acid-binding protein of winter wheat shares a domain with bacterial cold shock proteins. J Biol Chem 277:35248–35256

    Article  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotech 17:287–291

    Article  CAS  Google Scholar 

  • Keller T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb C (1998) A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca+2 binding motifs. Plant Cell 10:255–266

    CAS  Google Scholar 

  • Kim MS, Kim YC, Cho BH (2004) Gene expression analysis in cucumber leaves primed by root colonization with P. chlororaphis O6 upon challenge-inoculation with Corynespora cassiicola. Plant Biol 6:105–108

    Article  CAS  Google Scholar 

  • Kinkema M, Fan W, Dong X (2000) Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12:2339–2350

    CAS  Google Scholar 

  • Kishor P, Hong Z, Miao GH, Hu C, Verma D (1995) Overexpression of D-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    CAS  Google Scholar 

  • Kohler J, Hernandez JA, Caravaca F, Roldan A (2008) Plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water stressed plants. Funct Plant Biol 35:141–151

    Article  CAS  Google Scholar 

  • Kohler J, Caravaca F, Del Mar Alguacil M, Roldan A (2009) Elevated CO2 increases the effect of an arbuscular mycorrhizal fungus and a plant-growth-promoting rhizobacterium on structural stability of a semiarid agricultural soil under drought conditions. Soil Biol Biochem 41:1710–1716

    Article  CAS  Google Scholar 

  • Körner C (2003) Carbon limitation in trees. J Ecol 91:4–17

    Article  Google Scholar 

  • Krings M, Taylor TN, Hass H, Kerp H, Dotzler N, Hermsen EJ (2007) Fungal endophytes in a 400-million-yr-old Land plant: infection pathways, spatial distribution, and host responses. New Phytol 174:648–657

    Article  Google Scholar 

  • La Rosa PC, Chen Z, Nelson DE, Slngh NK, Hasegawa PM, Bressan RA (1992) Osmotin gene expression is posttranscriptionally regulated. Plant Physiol 100:409–415

    Article  Google Scholar 

  • Leuchtmann A (1992) Systematics, distribution, and host specificity of grass endophytes. Natural Toxins 1:150–162

    Article  CAS  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses. Chilling, freezing, and high temperature stress. Academic, London

    Google Scholar 

  • Leyronas C, Raynal G (2001) Presence of Neotyphodium-like endophytes in European grasses. Annals Appl Biol 139:119–127

    Article  Google Scholar 

  • Llanes A, Reinoso H, Luna V (2005) Germination and early growth of Prosopis strombulifera seedlings in different saline solutions. World J Agricultural Sci 1:120–128

    Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  Google Scholar 

  • Maciá-vicente JG, Jansson H-B, Abdullah SK, Descals E, Salinas J, Lopez-llorca LV (2008a) Fungal Root endophytes from natural vegetation in mediterranean environments with special reference to fusarium spp. FEMS Microbiol Ecol 64:90–105

    Article  CAS  Google Scholar 

  • Maciá-vicente JG, Jansson H-B, Mendgen K, Lopezllorca LV (2008b) Colonization of barley roots by endophytic Fungi and their reduction of take-all caused by gaeumannomyces Graminis var. Tritici. Can J Microbiol 54:600–609

    Article  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2006) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  Google Scholar 

  • Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940

    Article  CAS  Google Scholar 

  • Malinowski DP, Belesky DP, Lewis GC (2005) Abiotic stresses in endophytic grasses. In: Roberts CA, West CP, Spiers DE (eds) Neotyphodium in Cool-season Grasses. Blackwell Publishing, pp 187–199

  • Marilley L, Hartwig UA, Aragno M (1999) Influence of an elevated atmospheric CO2 content on soil and rhizosphere bacterial communities beneath Lolium perenne and Trifolium repens under field conditions. Microb Ecol 38:39–49

    Article  CAS  Google Scholar 

  • Marks S, Lincoln DE (1996) Antiherbivore defence mutualism under elevated carbon dioxide levels: a fungal endophyte and grass. Environ Entomol 25:618–623

    Google Scholar 

  • Marulanda A, Porcel R, Barea JM, Azcon R (2007) Drought tolerance and antioxidant activities in lavender plants colonized by native drought tolerant or drought sensitive Glomus species. Microb Ecol 54:543–552

    Article  CAS  Google Scholar 

  • Montealegre CM, Van Kessel C, Blumenthal JM, Hur H-G, Hartwig UA, Sadowsky MJ (2000) Elevated atmospheric CO2 alters microbial population structure in a pasture ecosystem. Glob Change Biol 6:475–482

    Article  Google Scholar 

  • Morison JIL, Baker NR, Mullineaux PM, Davies WJ (2008) Improving water use in crop production. Philos Trans R Soc Lond B Biol Sci 363:639–658

    Article  CAS  Google Scholar 

  • Morse LJ, Day TA, Faeth SH (2002) Effect of Neotyphodium endophyte infection on growth and leaf gas exchange of Arizona fescue under contrasting water availability regimes. Environ Exp Bot 48:257–268

    Article  Google Scholar 

  • Morse LJ, Faeth SH, Day TA (2007) Neotyphodium interactions with a wild grass are driven mainly by endophyte haplotype. Functional Ecol 21:813–822

    Article  Google Scholar 

  • Muller CB, Krauss J (2005) Symbiosis between grasses and asexual fungal endophytes. Curr Opinion Plant Biol 8:450–456

    Article  CAS  Google Scholar 

  • Nelson D, Salamlnl F, Bartels D (1994) Abscisic acid promotes nove1 DNA-binding to a desiccation-related promoter of Craterostigma plantagineum. Plant J 5:451–458

    Article  CAS  Google Scholar 

  • Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci U S A 104:16450–16455

    Article  CAS  Google Scholar 

  • Niu X, Zhu JK, Naraslmhan ML, Salzman RA, Bressan RA, Hasegawa PM (1993) NaCl regulation of plasma membrane H+-ATPase gene expression in a glycophyte and a halophyte. Plant Physiol 103:7l3–7l8

    Article  Google Scholar 

  • Nomura M, Ishltani M, Takabe T, Rai AK, Takabe T (1995) Synechococcus sp. PCC7942 transformed with Escherichia coli bet genes produces glycine-betaine from choline and acquires resistance to salt stress. Plant Physiol 107:703–708

    CAS  Google Scholar 

  • Noritake T, Kawakita K, Doke N (1996) Nitric oxide induces phytoalexin accumulation in potato tuber tissues. Plant Cell Physiol 37:113–116

    Article  CAS  Google Scholar 

  • Olsrud M, Carlsson BA, Svensson BM, Michelsen A, Melillo JM (2010) Responses of fungal root colonization, plant cover and leaf nutrients to long-term exposure to elevated atmospheric CO2 and warming in a subarctic birch forest understory. Glob Change Biol 16:1820–1829

    Article  Google Scholar 

  • Ozturk L, Kufrevioglu OI, Demir Y (2008) In vivo and in vitro effects of ethephon on some oxidative enzymes in spinach leaves. Acta Physiol Plant 30:105–110

    Article  CAS  Google Scholar 

  • Park KS, Kloepper JW (2000) Activation of PR-1a promotes by rhizobacteria which induce systemic resistance in tobacco against P. syringae pv. tabaci. Biol Cntrl 18:2–9

    Article  CAS  Google Scholar 

  • Pieterse CMJ, van Wees SCM, Ton J, Van Pelt JA, van Loon LC (2002) Signaling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana. Plant Biol 4:535–544

    Article  CAS  Google Scholar 

  • Pilon-Smits EAH, Ebskamp MJM, Paul MJ, Jeuken MJW, Weisbeek PJ, Smeekens SCY (1995) lmproved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol 107:125–130

    CAS  Google Scholar 

  • Poorter H, Navas M-L (2003) Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytol 157:175–198

    Article  Google Scholar 

  • Quatrano RS, Bartels D, Ho THD, Pages M (1997) New insights into ABA-mediated processes. Plant Cell 9:470–475

    CAS  Google Scholar 

  • Raghothama KG, Liu D, Nelson E, Hasegawa PM, Bressan RA (1993) Analysis of an osmotically regulated pathogenesis-related osmotin gene promoter. Plant Mol Biol 23:1117–1128

    Article  CAS  Google Scholar 

  • Rangel-Castro JI, Killham K, Ostle N, Nicol GW, Anderson IC, Scrimgeour CM, Ineson P, Meharg A, Prosser JI (2005) Stable isotope probing analysis of the influence of liming on root exudate utilization by soil microorganisms. Environ Microbiol 7:828–838

    Article  CAS  Google Scholar 

  • Rasche F, Hodl V, Poll C, Kandeler E, Gerzabek MH, van Elsas JD, Sessitsch A (2006a) Rhizosphere bacteria affected by transgenic potatoes with antibacterial activities in comparison to effects of soil, wildtype potatoes, vegetation stage and pathogen exposure. FEMS Microbiol Ecol 56:219–235

    Article  CAS  Google Scholar 

  • Rasche F, Velvis H, Zachow C, Berg G, van Elsas JD, Sessitsch A (2006b) Impact of transgenic potatoes expressing antibacterial agents on bacterial endophytes is comparable to effects of wildtype potatoes and changing environmental conditions. J Appl Ecol 43:555–566

    Article  CAS  Google Scholar 

  • Rasche F, Lueders T, Schaefer S, Buegger F, Gattinger A, Schloter M, Hood-Nowotny RC, Sessitsch A (2009) DNA-stable isotope probing enables the identification of active bacterial endophytes in potato. New Phytol 181:802–807

    Article  CAS  Google Scholar 

  • Rathinasabapathi B, McCue KF, Gage DA, Hanson AD (1994) Metabolic engineering of glycine betaine synthesis: plant betaine aldehyde dehydrogenases lacking typical transitpeptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance. Planta 193:155–162

    Article  CAS  Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/Fungal symbiosis. Science 298:1581

    Article  CAS  Google Scholar 

  • Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JMH, Naeem S, Trost J (2006) Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440:922–925

    Article  CAS  Google Scholar 

  • Reinoso H, Sosa L, Ramírez L, Luna V (2004) Salt-induced changes in the vegetative anatomy of Prosopis strombulifera (Leguminosae). Can J Bot 82:618–628

    Article  Google Scholar 

  • Rhoades J, Loveday J (1990) Salinity in irrigated agriculture. In: Stewart BA, Nielsen DR (eds) Irrigation of agricultural crops Agronomy Nº 17. Amer Soc Agron, Madison, pp 1089–1142

    Google Scholar 

  • Richardson MD, Chapman GW, Hoveland CS, Bacon CW (1992) Sugar alcohols in endophyte-infected tall fescue under drought. Crop Sci 32:1060–1061

    Article  CAS  Google Scholar 

  • Rillig MC, Allen MF (1999) What is the role of arbuscular mycorrhizal fungi in plant-to-ecosystem responses to elevated atmospheric CO2? Mycor 9:1–8

    Article  Google Scholar 

  • Rodriguez R, Redman RS (2008) More than 400 Ma of evolution and some plants still can’t make it on their own: plant Stress tolerance via fungal symbiosis. J Expl Bot 59:1109–1114

    Article  CAS  Google Scholar 

  • Rodriguez RJ, Redman RS, Henson JM (2004) The role Of fungal symbioses in the adaptation of plants to high stress environments. Mitig Adapt Strateg Glob Chang 9:261–272

    Article  Google Scholar 

  • Rodriguez RJ, Redman RS, Henson JM (2005) Symbiotic Lifestyle expression by fungal endophytes and the adaptation of plants to stress: Unravelling the complexities of intimacy. In: Dighton J, White JF, Oudemans P (eds) The fungal community: Its organization and role in the ecosystem. CRC Press, Boca Raton

    Google Scholar 

  • Rodriguez RJ, Henson JM, van Volkenburgh E, Hoy M, Wright I, Beckwith F, Kim Y, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    Article  Google Scholar 

  • Romero C, BellesJM VJL, SerranoR C-MFA (1997) Expression of the yeast trehalose-6-phosphate synthetase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. Planta 201:293–297

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, Delledonne M (2003) Nitric oxide signaling in plant-pathogen interactions. IUBMB Life 55:579–583

    Article  CAS  Google Scholar 

  • Rudgers JA, Holah J, Orr SP, Clay K (2007) Forest succession suppressed by an introduced plant–fungal symbiosis. Ecol 88:18–25

    Article  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932

    Article  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  CAS  Google Scholar 

  • Saikkonen K, Lehtonen P, Helander M, Koricheva J, Faeth SH (2006) Model systems in ecology: dissecting the endophyte-grass literature. Trends Plant Sci 11:428–433

    Article  CAS  Google Scholar 

  • Sanders IR, Streitwolf-Engel R, van der Heijden MGA, Boller T, Wiemken A (1998) Increased allocation to external hyphae of arbuscular mycorrhizal fungi under CO2 enrichment. Oecol 117:496–503

    Article  Google Scholar 

  • Sárdi É, Stefanovits-Bányai É (2006) Relationship between peroxidase activity and the amount of fully N-methylated compounds in bean plants infected by Pseudomonas savastanoi pv. Phaseolicola. Acta Physiol Plant 28:95–100

    Article  Google Scholar 

  • Sarhan F, Danyluk J (1998) Engineering cold-tolerant crops-throwing the master switch. Trends Plant Sci 3:289–290

    Article  Google Scholar 

  • Sasaki K, Kim MH, Imai R (2007) Arabidopsis cold shock domain protein2 is a RNA chaperone that is regulated by cold and developmental signals. Biochem Biophys Res Commun 364:633–638

    Article  CAS  Google Scholar 

  • Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G, Hutzler P, Schmid M, Van Breusegem F, Eberl L, Hartmann A, Langebartels C (2006) Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918

    Article  CAS  Google Scholar 

  • Sessitsch A, Howieson JG, Perret X, Antoun H, Martínez-Romero E (2002) Advances in Rhizobium research. Crit Rev Plant Sci 21:323–378

  • Shirasu K, Nakajima H, Rajasekhar VK, Dixon RA, Lamb C (1997) Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell 9:261–270

    CAS  Google Scholar 

  • Smith SE, Read DJ (2009) Mycorrhizal Symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Suarez R, Wong A, Ramirez M, Barraza A, OrozcoMdel C, Cevallos MA, Lara M, Hernandez G, Iturriaga G (2008) Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol Plant Microbe Interact 21:958–966

    Article  CAS  Google Scholar 

  • Subramaniam R, Desveaux D, Spickler C, Michnick SW, Brisson N (2001) Direct visualisation of protein interaction in plant cells. Natl Biotechnol 19:769–772

    Article  CAS  Google Scholar 

  • Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought- and cold-inducible genes for galactinal synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426

    Article  CAS  Google Scholar 

  • Tang J, Xu L, Chen X, Hu S (2009) Interaction between C4 barnyard grass and C3 upland rice under elevated CO2: impact of mycorrhizae. Acta Oecol 35:227–235

    Article  Google Scholar 

  • Tarczynski MC, Jensen RG, Bohnert HJ (1993) Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259:508–510

    Article  CAS  Google Scholar 

  • Tarnawski S, Aragno M (2006) The influence of elevated pCO2 on functions and diversity of rhizosphere and soil bacterial communities. In: Noesberger J, Long SP, Norby RJ, Stitt M, Hendrey GH, Blum H (eds) Managed Ecosystems and CO2—Case Studies, Processes and Perspectives. Series: Ecological Studies, vol 187. Springer, Berlin, pp 393–412

    Google Scholar 

  • Thomma BPHJ, Eggermont K, Broekaert WF, Cammue BPA (2000) Disease development of several fungi on Arabidopsis can be reduced by treatment with methyl jasmonate. Plant Physiol Biochem 38:421–427

    Article  CAS  Google Scholar 

  • Thomma BPHJ, Tierens KFM, Penninckx IAMA, Mauch-Mani B, Broekaert WF, Cammue BPA (2001) Different micro-organisms differentially induce Arabidopsis disease response pathways. Plant Physiol Biochem 39:673–680

    Article  CAS  Google Scholar 

  • Ton J, Davison S, van Wees SCM, van Loon LC, Pieterse CMJ (2001) The Arabidopsis ISR1 locus controlling rhizobacteria-mediated ISR is involved in ethylene signaling. Plant Physiol 125:652–661

    Article  CAS  Google Scholar 

  • Tuberosa R, Salvi S (2006) Genomic-based approaches to improve drought tolerance of crops. Trends Plant Sci 11:405–412

    Article  CAS  Google Scholar 

  • Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363

    Article  Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  Google Scholar 

  • Verbruggen E, Roling WFM, Gamper HA, Kowalchuk GA, Verhoef HA, van der Heijden MGA (2010) Positive effects of organic farming on below-ground mutualists: large-scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytol 186:968–979

    Article  CAS  Google Scholar 

  • Walbot V, Cullis CA (1985) Rapid genomic change in plants. Annu Rev Plant Physiol 36:367–396

    Article  CAS  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D, Franken P, Kogel K-H (2005) The Endophytic fungus piriformospora indica reprograms barley to saltstress Tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102:13386–13391

    Article  CAS  Google Scholar 

  • Wang Y, He W, Huang H, An LZ, Wang D, Zhang F (2009) Antioxidative responses to different altitudes in leaves of alpine plant Polygonum viviparum in summer. Acta Physiol Plant 31:839–848

    Article  CAS  Google Scholar 

  • Weber H (2002) Fatty-acid derived signals in plants. Trends Plant Sci 7:217–224

    Article  CAS  Google Scholar 

  • White JF Jr (1994) Taxonomic relationships among the members of the Balansiae (Clavicipitales). In: Bacon CW, White JF Jr (eds) Biotechnology of Endophytic Fungi of Grasses. CRC Press, Boca Raton, pp 3–20

    Google Scholar 

  • White JF Jr, Reddy PV (1998) Examination of structure and molecular phylogenetic relationships of some graminicolous symbionts in genera Epichloe and Parepichloe. Mycol 90:226–234

    Article  Google Scholar 

  • Wilhelm KS, Thomashow MF (1993) Arabidopsis thaliana COr75b, an apparent homologue of COrl58, is strongly responsive to cold and ABA, but not drought. Plant Mol Biol 23:1073–1077

    Article  CAS  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho T, Wu R (1996) Expression or a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water-deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1993) The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Mol Gen Genet 238:17–25

    CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A nove1 cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    CAS  Google Scholar 

  • Yildirim E, Taylor AG (2005) Effect of biological treatments on growth of bean plans under salt stress. Ann Rep Bean Improv Coop 48:176–177

    Google Scholar 

  • Zhang S, Moyne AL, Reddy M-S, Kloepper JW (2002) The role of salicylic acid in induced systemic resistance elicited by plant growth promoting rhizobacteria against blue mold of tobacco. Biol Cntrl 25:288–296

    Article  Google Scholar 

Download references

Acknowledgments

The author is grateful to DBT project grant no. BT/PR1231/AGR/021/340/2011 to DKC for financial support. Additionally, the author would like to acknowledge Dean, FASC for the kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Choudhary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choudhary, D.K. Microbial rescue to plant under habitat-imposed abiotic and biotic stresses. Appl Microbiol Biotechnol 96, 1137–1155 (2012). https://doi.org/10.1007/s00253-012-4429-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4429-x

Keywords

Navigation