Applied Microbiology and Biotechnology

, Volume 96, Issue 3, pp 841–849 | Cite as

Prolongation of electrode lifetime in biofuel cells by periodic enzyme renewal

  • S. Rubenwolf
  • S. Sané
  • L. Hussein
  • J. Kestel
  • F. von Stetten
  • G. Urban
  • M. Krueger
  • R. Zengerle
  • S. Kerzenmacher
Bioenergy and Biofuels

Abstract

Enzymatically catalyzed biofuel cells show unique specificity and promise high power densities, but suffer from a limited lifetime due to enzyme deactivation. In the present work, we demonstrate a novel concept to extend the lifetime of a laccase-catalyzed oxygen reduction cathode in which we decouple the electrode lifetime from the limited enzyme lifetime by a regular resupply of fresh enzymes. Thereto, the adsorption behavior of laccase from Trametes versicolor to buckypaper electrode material, as well as its time-dependent deactivation characteristics, has been investigated. Laccase shows a Langmuir-type adsorption to the carbon nanotube-based buckypaper electrodes, with a mean residence time of 2 days per molecule. In a citrate buffer of pH 5, laccase does not show any deactivation at room temperature for 2 days and exhibits a half-life of 9 days. In a long-term experiment, the laccase electrodes were operated at a constant galvanostatic load. The laccase-containing catholyte was periodically exchanged against a freshly prepared one every second day to provide sufficient active enzymes in the catholyte for the replacement of desorbed inactive enzymes. Compared to a corresponding control experiment without catholyte exchange, this procedure resulted in a 2.5 times longer cathode lifetime of 19 ± 9 days in which the electrode showed a potential above 0.744 V vs. normal hydrogen electrode at 110 μA cm−2. This clearly indicates the successful exchange of molecules by desorption and re-adsorption and is a first step toward the realization of a self-regenerating enzymatic biofuel cell in which enzyme-producing microorganisms are integrated into the electrode to continuously resupply fresh enzymes.

Keywords

Enzymatic biofuel cell Laccase Lifetime Long-term stability Adsorption Buckypaper 

References

  1. Antiohos D, Moulton SE, Minett AI, Wallace GG, Chen J (2010) Electrochemical investigation of carbon nanotube nanoweb architecture in biological media. Electrochem Commun 12:1471–1474CrossRefGoogle Scholar
  2. Atanasov P, Yang S, Salehi C, Ghindilis AL, Wilkins E, Schade D (1997) Implantation of a refillable glucose monitoring-telemetry device. Biosens Bioelectron 12:669–680CrossRefGoogle Scholar
  3. Atkins P, de Paula J (2006) Atkin’s physical chemistry, 8th edn. Oxford University Press, OxfordGoogle Scholar
  4. Binjamin G, Chen T, Heller A (2001) Sources of instability of ‘wired’ enzyme anodes in serum: urate and transition metal ions. J Electroanal Chem 500:604–6011CrossRefGoogle Scholar
  5. Blanford CF, Heath RS, Armstrong FA (2007) A stable electrode for high-potential, electrocatalytic O2 reduction based on rational attachment of a blue copper oxidase to a graphite surface. Chem Commun 17:1710–1712CrossRefGoogle Scholar
  6. Chase HA (1984) Prediction of the performance of preparative affinity-chromatography. J Chromatogr 297:179–202CrossRefGoogle Scholar
  7. Cinquin P, Gondran C, Giroud F, Mazabrard S, Pellissier A, Boucher F, Alcaraz JP, Gorgy K, Lenouvel F, Mathé S, Porcu P, Cosnier S (2010) A glucose biofuel cell implanted in rats. PLoS One 5:e10476CrossRefGoogle Scholar
  8. Coll PM, Perez P, Villar E, Shnyrov VL (1994) Domain-structure of laccase-I from the lignin-degrading basidiomycete PM1 revealed by differential scanning calorimetry. Biochem Mol Biol Int 34:1091–1098Google Scholar
  9. Fahraeus G, Reinhammar B (1967) Large scale production and purification of laccase from cultures of fungus Polyporus versicolor and some properties of laccase A. Acta Chem Scand 21:2367–2378CrossRefGoogle Scholar
  10. Fishilevich S, Amir L, Fridman Y, Aharoni A, Alfonta L (2009) Surface display of redox enzymes in microbial fuel cells. J Am Chem Soc 131:12052–12053CrossRefGoogle Scholar
  11. Gellett W, Schumacher J, Kesmez M, Le D, Minteer SD (2010) High current density air-breathing laccase biocathode. J Electrochem Soc 157:B557–B562CrossRefGoogle Scholar
  12. Gianazza E, Crawford J, Miller I (2007) Detecting oxidative post-translational modifications in proteins. Amino Acids 33:51–56CrossRefGoogle Scholar
  13. Horozova E, Dimcheva N (2004) Kinetic study of catalase adsorption on disperse carbonaceous matrices. Cent Eur J Chem 2:627–637CrossRefGoogle Scholar
  14. Hussein L, Rubenwolf S, von Stetten F, Urban G, Zengerle R, Krueger M, Kerzenmacher S (2011a) A highly efficient buckypaper-based electrode material for mediatorless laccase-catalyzed dioxygen reduction. Biosens Bioelectron 26:4133–4138CrossRefGoogle Scholar
  15. Hussein L, Urban G, Krüger M (2011b) Fabrication and characterization of buckypaper-based nanostructured electrodes as a novel material for biofuel cell applications. Phys Chem Chem Phys 13:5831–5839CrossRefGoogle Scholar
  16. Karpovich DS, Blanchard GJ (1994) Direct measurement of the adsorption-kinetics of alkanethiolate self-assembled monolayers on a microcrystalline gold surface. Langmuir 10:3315–3322CrossRefGoogle Scholar
  17. Kerzenmacher S, Mutschler K, Kräling U, Baumer H, Ducrée J, Zengerle R, von Stetten F (2009) A complete testing environment for the automated parallel performance characterization of biofuel cells: design, validation, and application. J Appl Electrochem 39:1477–1485CrossRefGoogle Scholar
  18. Kiiskinen LL, Palonen H, Linder M, Viikari L, Kruus K (2004) Laccase from Melanocarpus albomyces binds effectively to cellulose. FEBS Lett 576:251–255CrossRefGoogle Scholar
  19. Kloke A, Rubenwolf S, Bücking C, Gescher J, Kerzenmacher S, Zengerle R, von Stetten F (2010) A versatile miniature bioreactor and its application to bioelectrochemistry. Biosens Bioelectron 25:2559–2565CrossRefGoogle Scholar
  20. Laemmli UK (1970) Cleavage of structural proteins during assembly of head of bacteriophage-T4. Nature 227:680–685CrossRefGoogle Scholar
  21. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403CrossRefGoogle Scholar
  22. Lee CW, Gray HB, Anson FC, Malmstrom BG (1984) Catalysis of the reduction of dioxygen at graphite-electrodes coated with fungal laccase-A. J Electroanal Chem 172:289–300CrossRefGoogle Scholar
  23. Malmstrom BG, Kimmel JR, Smith EL (1959) Amino acid composition and amino-terminal sequence of yeast enolase. J Biol Chem 234:1108–1111Google Scholar
  24. Piontek K, Antorin M, Choinowski T (2002) Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-angstrom resolution containing a full complement of coppers. J Biol Chem 277:37663–37669CrossRefGoogle Scholar
  25. Rubenwolf S, Strohmeier O, Kloke A, Kerzenmacher S, Zengerle R, von Stetten F (2010) Carbon electrodes for direct electron transfer type laccase cathodes investigated by current density–cathode potential behavior. Biosens Bioelectron 26:841–845CrossRefGoogle Scholar
  26. Rubenwolf S, Kerzenmacher S, Zengerle R, von Stetten F (2011) Strategies to extend the lifetime of bioelectrochemical enzyme electrodes for biosensing and biofuel cell applications. Appl Microbiol Biotechnol 89:1315–1322CrossRefGoogle Scholar
  27. Sadana A (1988) Enzyme deactivation. Biotechnol Adv 6:349–446CrossRefGoogle Scholar
  28. Szczupak A, Kol-Kalman D, Alfonta L (2012) A hybrid biocathodes: surface display of O2 reducing enzymes for microbial fuel cell applications. Chem Commun 48:49–51CrossRefGoogle Scholar
  29. Tarasevich MR, Bogdanovskaya VA, Kuznetsova LN (2001) Bioelectrocatalytic reduction of oxygen in the presence of laccase adsorbed on carbon electrodes. Russ J Electrochem 37:833–837CrossRefGoogle Scholar
  30. Warburg O, Christian W (1941) Isolierung und Kristallisierung des Gärungsferments Enolase. Biochem Z 310:384–421Google Scholar
  31. Yamaguchi M, Nakano A, Taniyama T (2008) Yeast transformant-based glucose biosensor for implantable application. Sens Mater 20:131–141Google Scholar
  32. Yang S, Atanasov P, Wilkuns E (1997) Development of a dual glucose–oxygen sensor system for continuous in vivo monitoring. J Clin Eng 22:55–63Google Scholar
  33. Yaropolov AI, Skorobogatko OV, Vartanov SS, Varfolomeyev SD (1994) Laccase—properties, catalytic mechanism, and applicability. Appl Biochem Biotechnol 49:257–280CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • S. Rubenwolf
    • 1
  • S. Sané
    • 1
  • L. Hussein
    • 2
    • 3
  • J. Kestel
    • 1
    • 5
  • F. von Stetten
    • 1
  • G. Urban
    • 2
    • 3
  • M. Krueger
    • 2
    • 3
  • R. Zengerle
    • 1
    • 4
  • S. Kerzenmacher
    • 1
  1. 1.Laboratory for MEMS Applications, Department of Microsystems Engineering—IMTEKUniversity of FreiburgFreiburgGermany
  2. 2.Freiburg Materials Research Centre (FMF)University of FreiburgFreiburgGermany
  3. 3.Laboratory for Sensors, Department of Microsystems Engineering—IMTEKUniversity of FreiburgFreiburgGermany
  4. 4.BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
  5. 5.ifm electronic GmbHEssenGermany

Personalised recommendations