Skip to main content

Advertisement

Log in

Distinct and effective biotransformation of hexavalent chromium by a novel isolate under aerobic growth followed by facultative anaerobic incubation

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A bacterial isolate (G161) with high Cr(VI)-reducing capacity was isolated from Cr(VI)-contaminated soil and identified as Leucobacter sp. on the basis of 16S rRNA gene sequence analysis. The isolate was a Gram-positive, aerobic rod. The hexavalent chromate-reducing capability of the isolate was investigated under three conditions of oxygen stress. The isolate was found to reduce Cr(VI) under all conditions but performed most effectively during aerobic growth followed by facultative anaerobic incubation. Under these conditions, the isolate tolerated K2Cr2O7 concentrations up to 1,000 mg/l and completely reduced 400 mg/l K2Cr2O7 within 96 h. The strain reduced Cr(VI) over a wide range of pH (6.0–11.0) and temperatures (15–45 °C) with optimum performance at pH 8.0 and 35 °C. The presence of other metals, such as Ca2+, Co2+, Cu2+, Mn2+, Ni2+, and Zn2+, induced no effect or else played a stimulatory role on Cr(VI)-reduction activity of the strain. The strain was tested for Cr(VI) removal in wastewaters and proved capable of completely reducing the contained Cr(VI). This is the novel report of a bacterial growth and Cr(VI)-reduction process under sequential aerobic growth and facultative anaerobic conditions. The study suggested that the isolate possesses a distinct capability for Cr(VI) reduction which could be harnessed for the detoxification of chromate-contaminated wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ackerley DF, Gonzalez CF, Keyhan M, Blake R II, Matin A (2004a) Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environ Microbiol 6:851–860

    Article  CAS  Google Scholar 

  • Ackerley DF, Gonzalez CF, Park CH, Blake R II, Keyhan M, Matin A (2004b) Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli. Appl Environ Microbiol 70:873–882

    Article  CAS  Google Scholar 

  • Ackerley DF, Barak Y, Lynch SV, Curtin J, Matin A (2006) Effect of chromate stress on Escherichia coli K-12. J Bacteriol 188:3371–3381

    Article  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Barnhart J (1997) Occurences, uses, and properties of chromium. Regul Toxicol Pharmacol 26:S3–S7

    Article  CAS  Google Scholar 

  • Blake RC II, Choate DM, Bardhan S, Revis N, Barton LL, Zocco TG (1993) Chemical transformation of toxic metals by a Pseudomonas strain from a toxic waste site. Environ Toxicol Chem 12:1365–1376

    CAS  Google Scholar 

  • Camargo FA, Bento FM, Okeke BC, Frankenberger WT (2003a) Chromate reduction by chromium-resistant bacteria isolated from soils contaminated with dichromate. J Environ Qual 32:1228–1233

    Article  CAS  Google Scholar 

  • Camargo FA, Okeke BC, Bento FM, Frankenberger WT (2003b) In vitro reduction of hexavalent chromium by a cell-free extract of Bacillus sp. ES 29 stimulated by Cu2+. Appl Microbiol Biotechnol 62:569–573

    Article  CAS  Google Scholar 

  • Faisal M, Hasnain S (2004) Comparative study of Cr(VI) uptake and reduction in industrial effluent by Ochrobactrum intermedium and Brevibacterium sp. Biotechnol Lett 26:1623–1628

    Article  CAS  Google Scholar 

  • Ganguli A, Tripathi AK (2002) Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors. Appl Microbiol Biotechnol 58:416–420

    Article  CAS  Google Scholar 

  • Gu JD, Cheung KH, Lai HY (2006) Membrane-associated hexavalent chromium reductase of Bacillus megaterium TKW3 with induced expression. J Microbiol Biotechnol 16:855–862

    Google Scholar 

  • He Z, Gao F, Sha T, Hu Y, He C (2009) Isolation and characterization of a Cr(VI)-reduction Ochrobactrum sp. strain CSCr-3 from chromium landfill. J Hazard Mater 163:869–873

    Article  CAS  Google Scholar 

  • He M, Li X, Liu H, Miller SJ, Wang G, Rensing C (2011) Characterization and genomic analysis of a highly chromate resistant and reducing bacterial strain Lysinibacillus fusiformis ZC1. J Hazard Mater 185:682–688

    Article  CAS  Google Scholar 

  • Kathiravan MN, Karthick R, Muthukumar K (2011) Ex situ bioremediation of Cr(VI) contaminated soil by Bacillus sp.: batch and continuous studies. Chem Eng J Available online 2 March 2011. http://dx.doi.org/10.1016/j.cej.2011.02.060

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  Google Scholar 

  • Kiran B, Kaushik A, Kaushik CP (2007) Biosorption of Cr(VI) by native isolate of Lyngbya putealis (HH-15) in the presence of salts. J Hazard Mater 141:662–667

    Article  CAS  Google Scholar 

  • Kratochvil D, Pimentel P, Volesky B (1998) Removal of trivalent and hexavalent chromium by seaweed biosorbent. Environ Sci Technol 32:2693–2698

    Article  CAS  Google Scholar 

  • Mabbett AN, Macaskie LE (2001) A novel isolate of Desulfovibrio sp. with enhanced ability to reduce Cr(VI). Biotechnol Lett 23:683–687

    Article  CAS  Google Scholar 

  • McLean J, Beveridge TJ (2001) Chromate reduction by a Pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl Environ Microbiol 67:1076–1084

    Article  CAS  Google Scholar 

  • Morais PV, Francisco R, Branco R, Chung AP, da Costa MS (2004) Leucobacter chromiireducens sp. nov, and Leucobacter aridicollis sp. nov., two new species isolated from a chromium contaminated environment. Syst Appl Microbiol 27:646–652

    Article  CAS  Google Scholar 

  • Morais PV, Paulo C, Francisco R, Branco R, Paula Chung A, da Costa MS (2006) Leucobacter luti sp. nov., and Leucobacter alluvii sp. nov., two new species of the genus Leucobacter isolated under chromium stress. Syst Appl Microbiol 29:414–421

    Article  CAS  Google Scholar 

  • Ohtake H, Cervantes C, Silver S (1987) Decreased chromate uptake in Pseudomonas fluorescens carrying a chromate resistance plasmid. J Bacteriol 169:3853–3856

    CAS  Google Scholar 

  • Ohtake H, Fujii E, Toda K (1990) Reduction of toxic chromate in an industrial effluent by use of a chromate-reducing strain of Enterobacter cloacae. Environ Technol 11:663–668

    Article  CAS  Google Scholar 

  • Park CH, Keyhan M, Wielinga B, Fendorf S, Matin A (2000) Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Appl Environ Microbiol 66:1788–1795

    Article  CAS  Google Scholar 

  • Park CH, Gonzalez CF, Ackerley DF, Keyhan M, Matin A (2002) Molecular engineering of soluble bacterial proteins with chromate reductase activity. In: Hinche RE et al (eds) Remediation and beneficial reuse of contaminated sediments. Batelle Press, Columbus, pp 103–111

    Google Scholar 

  • Pattanapipitpaisal P, Brown NL, Macaskie LE (2001) Chromate reduction and 16S rRNA identification of bacteria isolated from a Cr(VI)-contaminated site. Appl Microbiol Biotechnol 57:257–261

    Article  CAS  Google Scholar 

  • Romanenko VI, Korenkov VN (1977) A pure culture of bacterial cells assimilating chromate and bichromates as hydrogen acceptors when grown under anaerobic conditions. Microbiologiya 46:414–417

    CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic tree. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Sultan S, Hasnain S (2007) Reduction of toxic hexavalent chromium by Ochrobactrum intermedium strain SDCr-5 stimulated by heavy metals. Bioresour Technol 98:340–344

    Article  CAS  Google Scholar 

  • Wang PC, Mori T, Komori K, Sasatsu M, Toda K, Ohtake H (1989) Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Appl Environ Microbiol 55:1665–1669

    CAS  Google Scholar 

  • Wang PC, Mori T, Toda K, Ohtake H (1990) Membrane-associated chromate reductase activity form Enterobacter cloacae. J Bacteriol 172:1670–1672

    CAS  Google Scholar 

  • Wang Q, Xu X, Zhao F, Liu Z, Xu J (2010) Reduction remediation of hexavalent chromium by bacterial flora in Cr(VI) aqueous solution. Water Sci Technol 61:2889–2896

    Article  CAS  Google Scholar 

  • Xu L, Luo M, Li W, Wei X, Xie K, Liu L, Jiang C, Liu H (2011) Reduction of hexavalent chromium by Pannonibacter phragmitetus LSSE-09 stimulated with external electron donors under alkaline conditions. J Hazard Mater 185:1169–1176

    Article  CAS  Google Scholar 

  • Xu L, Luo M, Jiang C, Wei X, Kong P, Liang X, Zhao J, Yang L, Liu H (2012) In vitro reduction of hexavalent chromium by cytoplasmic fractions of Pannonibacter phragmitetus LSSE-09 under aerobic and anaerobic conditions. Appl Biochem Biotechnol 166:933–941

    Article  CAS  Google Scholar 

  • Yanagi M, Yamasato K (1993) Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol Lett 107:115–120

    Article  CAS  Google Scholar 

  • Zahoor A, Rehman A (2009) Isolation of Cr(VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater. J Environ Sci 21:814–820

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (Y3110062) to Shimei Ge from the Zhejiang Provincial Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shichao Ge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, S., Zhou, M., Dong, X. et al. Distinct and effective biotransformation of hexavalent chromium by a novel isolate under aerobic growth followed by facultative anaerobic incubation. Appl Microbiol Biotechnol 97, 2131–2137 (2013). https://doi.org/10.1007/s00253-012-4361-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4361-0

Keywords