Bioconversion of p-coumaric acid to p-hydroxystyrene using phenolic acid decarboxylase from B. amyloliquefaciens in biphasic reaction system

Abstract

Phenolic acid decarboxylase (PAD) catalyzes the non-oxidative decarboxylation of p-coumaric acid (pCA) to p-hydroxystyrene (pHS). PAD from Bacillus amyloliquefaciens (BAPAD), which showed k cat/K m value for pCA (9.3 × 103 mM−1 s−1), was found as the most active one using the “Subgrouping Automata” program and by comparing enzyme activity. However, the production of pHS of recombinant Escherichia coli harboring BAPAD showed only a 22.7 % conversion yield due to product inhibition. Based on the partition coefficient of pHS and biocompatibility of the cell, 1-octanol was selected for the biphasic reaction. The conversion yield increased up to 98.0 % and 0.83 g/h/g DCW productivity was achieved at 100 mM pCA using equal volume of 1-octanol as an organic solvent. In the optimized biphasic reactor, using a three volume ratio of 1-octanol to phosphate buffer phase (50 mM, pH 7.0), the recombinant E. coli produced pHS with a 88.7 % conversion yield and 1.34 g/h/g DCW productivity at 300 mM pCA.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  2. Ben-Bassat A, Breinig S, Crum GA, Huang L, Altenbaugh AB, Rizzo N, Trotman RJ, Vannelli T, Sariaslani FS, Haynie SL (2007) Preparation of 4-vinylphenol using pHCA decarboxylase in a two-solvent medium. Org Process Res Dev 11:278–285

    Article  CAS  Google Scholar 

  3. Bernini R, Mincione E, Barontini M, Provenzanoa G, Setti L (2007) Obtaining 4-vinylphenols by decarboxylation of natural 4-hydroxycinnamic acids under microwave irradiation. Tetrahedron 63:9663–9667

    Article  CAS  Google Scholar 

  4. Cavin JF, Barthelmebs L, Divies C (1997a) Molecular characterization of an inducible p-coumaric acid decarboxylase from Lactobacillus plantarum: gene cloning, transcriptional analysis, overexpression in Escherichia coli, purification, and characterization. Appl Environ Microbiol 63:1939–1944

    CAS  Google Scholar 

  5. Cavin JF, Barthelmebs L, Guzzo J, Beeumen JV, Samyn B, Travers JF, Divies C (1997b) Purification and characterization of an inducible p-coumaric acid decarboxylase from Lactobacillus plantarum. FEMS Microbiol Lett 147:291–295

    Article  CAS  Google Scholar 

  6. Cavin JF, Dartois V, Divies C (1998) Gene cloning, transcriptional analysis, purification, and characterization of phenolic acid decarboxylase from Bacillus subtilis. Appl Environ Microbiol 64:1466–1471

    CAS  Google Scholar 

  7. Clausen M, Lamb CJ, Megnet R, Doerner PW (1994) PAD1 encodes phenylacrylic acid decarboxylase which confers resistance to cinnamic acid in Saccharomyces cerevisiae. Gene 142:107–112

    Article  CAS  Google Scholar 

  8. Díaz E, Ferrández A, Prieto MA, García JL (2001) Biodegradation of aromatic compounds by Escherichia coli. Microbiol Mol Biol Rev 65:523–569

    Google Scholar 

  9. Dugelay I, Gunata Z, Sapis C, Baumes R, Bayonove C (1993) Role of cinnamoyl esterase activities from enzyme preparations on the formation of volatile phenols during winemaking. J Agric Food Chem 41:2092–2096

    Article  CAS  Google Scholar 

  10. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763

    Article  CAS  Google Scholar 

  11. Gury J, Barthelmebs L, Tran NP, Divies C, Cavin JF (2004) Cloning, deletion, and characterization of PadR, the transcriptional repressor of the phenolic acid decarboxylase-encoding padA gene of Lactobacillus plantarum. Appl Environ Microbiol 70:2146–2153

    Article  CAS  Google Scholar 

  12. Harwood CS, Parales RE (1998) The β-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590

    Article  Google Scholar 

  13. Kieboom J, Dennis JJ, Zylstra GJ, Bont JM (1998) Active efflux of organic solvents by Pseudomonas putida is induced by solvents. J Bacteriol 180:6769–6772

    CAS  Google Scholar 

  14. Kunitsky K, Shah MC, Shuey SW, Trost BM, Wagman ME (2005) Method for preparing hydroxystyrenes and acetylated derivatives thereof by decarboxylation of phenolic compounds. US Pat Appl Publ AN 2005:1103382

  15. Landete JM, Rodriguez H, Curiel JA, Rivas B, Mancheno JM, Munoz R (2010) Gene cloning, expression, and characterization of phenolic acid decarboxylase from Lactobacillus brevis RM84. J Ind Microbiol Biotechnol 37:617–624

    Article  CAS  Google Scholar 

  16. Lee WH, Park JB, Park K, Kim MD, Seo JH (2007) Enhanced production of ε-caprolactone by overexpression of NADPH-regenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone monooxygenase gene. Appl Microbiol Biotechnol 76:329–338

    Article  CAS  Google Scholar 

  17. Luong JHT (1985) Kinetics of ethanol inhibition in alcohol fermentation. Biotechnol Bioeng 27:280–285

    Article  CAS  Google Scholar 

  18. Malla S, Koffas M, Kazlauskas R, Kim BG (2012) Production of 7-O-methyl aromadendrin, a medicinally valuable flavonoid, in Escherichia coli. Appl Environ Microbiol 78:684–694

    Article  CAS  Google Scholar 

  19. Meng F, Xu Y (2010) Improved production of (R)-2-octanol via asymmetric reduction of 2-octanone with Oenococcus oeni CECT4730 in a biphasic system. Biocatal Biotransformation 28:144–149

    Article  CAS  Google Scholar 

  20. Mukai N, Masaki K, Fujii T, Kawamukai M, Iefuji H (2010) PAD1 and FDC1 are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae. J Biosci Bioeng 109:564–569

    Article  CAS  Google Scholar 

  21. Park JB, Buhler B, Hacicher T, Hauer B, Panke S, Witholt B, Schmid A (2006) The efficiency of recombinant Escherichia coli as biocatalyst for stereospecific epoxidation. Biotechnol Bioeng 95:501–512

    Article  CAS  Google Scholar 

  22. Parke D, Ornston N (1986) Enzymes of the β-ketoadipate pathway are inducible in Rhizobium and Agrobacterium spp. and constitutive in Bradyrhizobium spp. J Bacteriol 165:288–292

    CAS  Google Scholar 

  23. Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-Gonzalez MI, Rojas A, Teran W, Segura A (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbiol 56:743–768

    Article  CAS  Google Scholar 

  24. Rangarajan ES, Li Y, Iannuzzi P, Tocilj A, Hung LW, Matte A, Cygler M (2004) Crystal structure of a dodecameric FMN-dependent UbiX-like decarboxylase (PAD1) from Escherichia coli O157: H7. Protein Sci 13:3006–3016

    Article  CAS  Google Scholar 

  25. Reyes LH, Almario MP, Kao KC (2011) Genomic library screens for genes involved in 1-butanol tolerance in Escherichia coli. PLoS One 6:e17678

    Article  CAS  Google Scholar 

  26. Rocal E, Meinander N, Hahn-Hägerdal B (1996) Xylitol production by immobilized recombinant Saccharomyces cerevisiae in a continuous packed-bed bioreactor. Biotechnol Bioeng 51:317–326

    Article  Google Scholar 

  27. Rodriguez H, Landete JM, Curiel JA, Rivas B, Mancheno JM, Munoz R (2008) Characterization of the p-coumaric acid decarboxylase from Lactobacillus plantarum CECT 748(T). J Agric Food Chem 56:3068–3072

    Article  CAS  Google Scholar 

  28. Segel IH (1975) Enzyme kinetics: behaviour and analysis of rapid equilibrium and steady-state enzyme systems, 1st edn. Wiley-Interscience, New York, pp 54–64

  29. Segura A, Bünz PV, D'Argenio DA, Ornston LN (1999) Genetic analysis of a chromosomal region containing vanA and vanB, genes required for conversion of either ferulate or vanillate to protocatechuate in Acinetobacter. J Bacteriol 181:3494–3504

    CAS  Google Scholar 

  30. Seo JH, Hwang JY, Seo SH, Kang H, Hwang BY, Kim BG (2012) Computational selection, identification and structural analysis of ω-aminotransferases with various substrate specificities from the genome sequence of Mesorhizobium MAFF303099. Biosci Biotechnol Biochem 76:1308–1314

    Google Scholar 

  31. Shin JS, Kim BG, Liese A, Wandrey C (2001a) Kinetic resolution of chiral amines with ω-transaminase using an enzyme-membrane reactor. Biotechnol Bioeng 73:179–187

    Article  CAS  Google Scholar 

  32. Shin JS, Kim BG, Shin DH (2001b) Kinetic resolution of chiral amines using packed-bed reactor. Enzyme Microb Technol 29:232–239

    Article  CAS  Google Scholar 

  33. Sullivan KH, Hegeman GD, Cordes EH (1979) Alteration of the fatty acid composition of Escherichia coli by growth in the presence of normal alcohol. J Bacteriol 138:133–138

    CAS  Google Scholar 

  34. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  35. Tsukagoshi N, Aono R (2000) Entry into and release of solvents by Escherichia coli in an organic-aqueous two-liquid-phase system and substrate specificity of the AcrAB-TolC solvent-extruding pump. J Bacteriol 182:4803–4810

    Article  CAS  Google Scholar 

  36. Venturi V, Zennaro F, Degrassi G, Okeke BC, Bruschi CV (1998) Genetics of ferulic acid bioconversion to protocatechuic acid in plant-growth-promoting Pseudomonas putida WCS358. Microbiology 144:965–973

    Article  CAS  Google Scholar 

  37. Verhoef S, Wierckx N, Westerhof RG, Winde JH, Ruijssenaars HJ (2009) Bioproduction of p-hydroxystyrene from glucose by the solvent-tolerant bacterium Pseudomonas putida S12 in a two-phase water-decanol fermentation. Appl Environ Microbiol 75:931–936

    Article  CAS  Google Scholar 

  38. Zahir Z, Seed KD, Dennis JJ (2006) Isolation and characterization of novel organic solvent-tolerant bacteria. Extremophiles 10:129–138

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by World Class University program through the National Research Foundation of Korea grant funded by the Ministry of Education, Science and Technology (R322009000102130).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Byung-Gee Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 75 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jung, DH., Choi, W., Choi, KY. et al. Bioconversion of p-coumaric acid to p-hydroxystyrene using phenolic acid decarboxylase from B. amyloliquefaciens in biphasic reaction system. Appl Microbiol Biotechnol 97, 1501–1511 (2013). https://doi.org/10.1007/s00253-012-4358-8

Download citation

Keywords

  • Phenolic acid decarboxylase
  • Bioconversion
  • p-Coumaric acid
  • p-Hydroxystyrene
  • Biphasic reaction
  • 1-Octanol