Skip to main content

Advertisement

Log in

A non-cyclic baboon θ-defensin derivative exhibiting antimicrobial activity against the phytopathogen Verticillium dahliae

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

θ-Defensins are the only natural cyclic proteins found in primates. They have strong antimicrobial activity related to their trisulfide ladders and macrocyclic conformation. A non-cyclic baboon θ-defensin (BTD) was synthesized by substituting valine with phenylalanine at position 17, at the C-terminal end of the BTD; this was termed “BTD-S.” The antimicrobial activities of this synthetic peptide were investigated against Escherichia coli and two cotton phytopathogens: Verticillium dahliae and Fusarium oxysporum. The minimum inhibitory concentration (MIC) of BTD-S for E. coli was 10 μg/mL and for V. dahliae was 5 μg/mL, significantly lower than that for F. oxysporum (40.0 μg/mL). A time course analysis of fungal cultures indicated that the growth of V. dahliae was completely inhibited after 96 h of BTD-S treatment. Furthermore, hemolysis assays revealed that BTD-S was not toxic to mammalian cells as it could not induce lysis of sheep red blood cells even at ten times the MIC (50 μg/mL). Scanning electron microscopy and double-stained (calcofluor white and propidium iodide binding) fluorescence microscopy showed that exposure of spores of V. dahliae to BTD-S either disabled normal germination or disintegrated the spores. The size of cells exposed to BTD-S was significantly reduced compared with controls, and their number increased in a dose-dependent curve when measured by flow cytometry. These findings suggest that BTD-S has great potential to inhibit the growth of V. dahliae and can be utilized as an effective remedy to control economic losses caused by Verticillium wilt in the development of wilt-resistant cotton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Aerts AM, Francois IEJA, Meert EMK, Li Q-T, Cammue BPA, Thevissen K (2007) The antifungal activity of RsAFP2, a plant defensin from Raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. J Mol Microbiol Biotechnol 13:243–247

    Article  CAS  Google Scholar 

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  Google Scholar 

  • Bals R, Wang X, Wu Z, Freeman T, Bafna V, Zasloff M, Wilson JM (1998) Human β-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. J Clin Invest 102:874–880

    Article  CAS  Google Scholar 

  • Binder U, Bencina M, Eigentler A, Meyer V, Marx F (2011) The Aspergillus giganteus antifungal protein AFPNN5353 activates the cell wall integrity pathway and perturbs calcium homeostasis. BMC Microbiol 11:209

    Article  CAS  Google Scholar 

  • Breukink E, de Kruijff B (2006) Lipid II as a target for antibiotics. Nat Rev Drug Discov 5:321–332

    Article  CAS  Google Scholar 

  • Buchenau H, Erwin DC (1971) Control of Verticillium wilt of cotton by spraying foliage with benomyl and thiabendazole solubilized with hydrochloric acid. Phytopathology 61:433–434

    Article  Google Scholar 

  • Carvalho AO, Gomes VM (2009) Plant defensins—prospects for the biological functions and biotechnological properties. Peptides 30:1007–1020

    Article  CAS  Google Scholar 

  • Cole AM, Hong T, Boo LM, Nguyen T, Zhao C, Bristol G, Zack JA, Waring AJ, Yang OO, Lehrer RI (2002) Retrocyclin: a primate peptide that protects cells from infection by T- and M-tropic strains of HIV-1. Proc Natl Acad Sci U S A 99:1813–1818

    Article  CAS  Google Scholar 

  • de Beer A, Vivier MA (2008) Vv-AMP1, a ripening induced peptide from Vitis vinifera shows strong antifungal activity. BMC Plant Biol 8:75

    Article  Google Scholar 

  • de Coninck BMA, Sels J, Venmans E, Thys W, Goderis IJ, Carron D, Delaure SL, Cammue BPA, de Bolle MFC, Mathys J (2010) Arabidopsis thaliana plant defensin AtPDF1.1 is involved in the plant response to biotic stress. New Phytol 187:1075–1088

    Article  Google Scholar 

  • Derua R, Gustafson KR, Pannell LK (1996) Analysis of the disulfide linkage pattern in circulin A and B, HIV-inhibitory macrocyclic peptides. Biochem Biophys Res Commun 228:632–638

    Article  CAS  Google Scholar 

  • Doss M, White MR, Tecle T, Hartshorn KL (2010) Human defensins and LL-37 in mucosal immunity. J Leukocyte Biol 87:79–92

    Article  CAS  Google Scholar 

  • Fradin EF, Thomma BPHJ (2006) Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol Plant Pathol 7:71–86

    Article  CAS  Google Scholar 

  • Gao AG, Hakimi SM, Mittanck CA, Wu Y, Woerner BM, Stark DM, Shah DM, Liang JH, Rommens CMT (2000) Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol 18:1307–1310

    Article  CAS  Google Scholar 

  • Garcia AE, Osapay G, Tran PA, Yuan J, Selsted ME (2008) Isolation, synthesis, and antimicrobial activities of naturally occurring θ-defensin isoforms from baboon leukocytes. Infect Immun 76:5883–5891

    Article  CAS  Google Scholar 

  • Göre ME, Caner OK, Altın N, Aydın MH, Erdoğan O, Filizer F, Büyükdöğerlioğlu A (2009) Evaluation of cotton cultivars for resistance to pathotypes of Verticillium dahliae. Crop Prot 28:215–219

    Article  Google Scholar 

  • Hyde AJ, Parisot J, McNichol A, Bonev BB (2006) Nisin-induced changes in Bacillus morphology suggest a paradigm of antibiotic action. Proc Natl Acad Sci U S A 103:19896–19901

    Article  CAS  Google Scholar 

  • Jang WS, Kim HK, Lee KY, Kim SA, Han YS, Lee IH (2006) Antifungal activity of synthetic peptide derived from halocidin, antimicrobial peptide from the tunicate, Halocynthia aurantium. FEBS Lett 580:1490–1496

    Article  CAS  Google Scholar 

  • Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL Repository and associated resources. Nucleic Acids Res 37:387–392

    Article  Google Scholar 

  • Kurt S, Dervis S, Sahinler S (2003) Sensitivity of Verticillium dahliae to prochloraz and prochloraz–manganese complex and control of Verticillium wilt of cotton in the field. Crop Prot 22:51–55

    Article  CAS  Google Scholar 

  • Le Lay C, Akerey B, Fliss I, Subirade M, Rouabhia M (2008) Nisin Z inhibits the growth of Candida albicans and its transition from blastospore to hyphal form. J Appl Microbiol 105:1630–1639

    Article  Google Scholar 

  • Leeuw ED, Li C, Zeng P, Li C, Buin MD, Lu W, Breukink E, Lu W (2010) Functional interaction of human neutrophil peptide-1 with the cell wall precursor lipid II. FEBS Lett 584:1543–1548

    Article  Google Scholar 

  • Leonova L, Kokryakov VN, Aleshina G, Hong T, Nguyen T, Zhao C, Waring AJ, Lehrer RI (2001) Circular minidefensins and posttranslational generation of molecular diversity. J Leukocyte Biol 70:461–464

    CAS  Google Scholar 

  • Liu LH, Xu KJ, Wang HY, Tan P, Fan WM, Venkatraman SS, Li LJ, Yang YY (2009) Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat Nanotechnol 4:457–463

    Article  CAS  Google Scholar 

  • Ma P, Li SZ, Lu XY, Guo QG, Li BQ (2010) Development, registration and commercialization of a microbial fungicide for controlling cotton Verticillium wilt in China. Phytopathology 100:S75

    Article  Google Scholar 

  • Mackewicz CE, Yuan J, Tran P, Diaz L, Mack E, Selsted ME, Levy JA (2003) α-Defensins can have anti-HIV activity but are not CD8 cell anti-HIV factors. AIDS 17:23–32

    Article  Google Scholar 

  • National Bureau of Statistics of China (2009) China Statistical Yearbook. China Statistics Press, Beijing

    Google Scholar 

  • Nguyen TX, Cole AM, Lehrer RI (2003) Evolution of primate θ-defensins: a serpentine path to a sweet tooth. Peptides 24:1647–1654

    Article  CAS  Google Scholar 

  • Ntui VO, Azadi P, Thirukkumaran G, Khan RS, Chin DP, Nakamura I, Mii M (2011) Increased resistance to Fusarium wilt in transgenic tobacco lines co-expressing chitinase and wasabi defensin genes. Plant Pathol 60:221–231

    Article  CAS  Google Scholar 

  • Prenner EJ, Lewis R, McElhaney RN (1999) The interaction of the antimicrobial peptide gramicidin S with lipid bilayer model and biological membranes. BBA-Biomembranes 1462:201–221

    Article  CAS  Google Scholar 

  • Rogozhin EA, Oshchepkova YI, Odintsova TI, Khadeeva NV, Veshkurova ON, Egorov TA, Grishin EV, Salikhov SI (2011) Novel antifungal defensins from Nigella sativa L. seeds. Plant Physiol Biochem 49:131–137

    Article  CAS  Google Scholar 

  • Seebah S, Suresh A, Zhuo SW, Choong YH, Chua H, Chuon D, Beuerman R, Verma C (2007) Defensins knowledgebase: a manually curated database and information source focused on the defensins family of antimicrobial peptides. Nucleic Acids Res 35:265–268

    Article  Google Scholar 

  • Selsted ME, Ouellette AJ (2005) Mammalian defensins in the antimicrobial immune response. Nat Immunol 6:551–557

    Article  CAS  Google Scholar 

  • Stegemann C, Tsvetkova EV, Aleshina GM, Lehrer RI, Kokryakov VN, Hoffmann R (2010) De novo sequencing of two new cyclic θ-defensins from baboon (Papio hamadryas) leukocytes by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 24:599–604

    Article  CAS  Google Scholar 

  • Tang YQ, Yuan J, Osapay G, Osapay K, Tran D, Miller CJ, Ouellette AJ, Selsted ME (1999) A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated α-defensins. Science 286:498–502

    Article  CAS  Google Scholar 

  • Thevissen K, Cammue BPA, Lemaire K, Winderickx J, Dickson RC, Lester RL, Ferket KKA, Even FV, Parret AHA, Broekaert WF (2000) A gene encoding a sphingolipid biosynthesis enzyme determines the sensitivity of Saccharomyces cerevisiae to an antifungal plant defensin from dahlia (Dahlia merckii). Proc Natl Acad Sci U S A 97:9531–9536

    Article  CAS  Google Scholar 

  • Thevissen K, Ferket KKA, François IEJA, Cammue BPA (2003) Interactions of antifungal plant defensins with fungal membrane components. Peptides 24:1705–1712

    Article  CAS  Google Scholar 

  • Thevissen K, Warnecke DC, François IEJA, Leipelt M, Heinz E, Ott C, Zähringer U, Thomma BPHJ, Ferket KKA, Cammue BPA (2004) Defensins from insects and plants interact with fungal glucosylceramides. J Biol Chem 279:3900–3905

    Article  CAS  Google Scholar 

  • Thorstholm L, Craik DJ (2011) Discovery and applications of naturally occurring cyclic peptides. Drug Discov Today: Technol 9:e13–e21

    Article  Google Scholar 

  • Tran D, Tran P, Roberts K, Osapay G, Schaal J, Ouellette A, Selsted ME (2008) Microbicidal properties and cytocidal selectivity of rhesus macaque theta defensins. Antimicrob Agents Chemother 52:944–953

    Article  CAS  Google Scholar 

  • Vayssiere JL, Petit PX, Risler Y, Mignotte B (1994) Commitment to apoptosis is associated with changes in mitochondrial biogenesis and activity in cell lines conditionally immortalized with simian virus 40. Proc Natl Acad Sci U S A 91:11752–11756

    Article  CAS  Google Scholar 

  • Wang W, Mulakala C, Ward SC, Jung G, Luong H, Pham D, Waring AJ, Kaznessis Y, Lu W, Bradley KA, Lehrer RI (2006) Retrocyclins kill bacilli and germinating spores of Bacillus anthracis and inactivate anthrax lethal toxin. J Biol Chem 281:32755–32764

    Article  CAS  Google Scholar 

  • Welkos S, Cote CK, Hahn U, Shastak O, Jedermann J, Bozue J, Jung G, Ruchala P, Pratikhya P, Tang T, Lehrer RI, Beyer W (2011) Humanized θ-defensins (retrocyclins) enhance macrophage performance and protect mice from experimental anthrax infections. Antimicrob Agents Chemother 55:4238–4250

    Article  CAS  Google Scholar 

  • Wohlford-Lenane CL, Meyerholz DK, Perlman S, Zhou H, Tran D, Selsted ME, McCray PJ (2009) Rhesus θ-defensin prevents death in a mouse model of severe acute respiratory syndrome coronavirus pulmonary disease. J Virol 83:11385–11390

    Article  CAS  Google Scholar 

  • Won HS, Jung SJ, Kim HE, Seo MD, Lee BJ (2004) Systematic peptide engineering and structural characterization to search for the shortest antimicrobial peptide analogue of gaegurin 5. J Biol Chem 279:14784–14791

    Article  CAS  Google Scholar 

  • Yang D, Biragyn A, Hoover DM, Lubkowski J, Oppenheim JJ (2004) Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu Rev Immunol 22:181–215

    Article  Google Scholar 

  • Yasin B, Wang W, Pang M, Cheshenko N, Hong T, Waring AJ, Herold BC, Wagar EA, Lehrer RI (2004) θ Defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry. J Virol 78:5147–5156

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (no. 31171616) and the Ministry of Agriculture (2009ZX08009-061B).

Author information

Authors and Affiliations

Corresponding author

Correspondence to Xuede Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 232 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, M., Zhao, Y., Bibi, N. et al. A non-cyclic baboon θ-defensin derivative exhibiting antimicrobial activity against the phytopathogen Verticillium dahliae . Appl Microbiol Biotechnol 97, 2043–2052 (2013). https://doi.org/10.1007/s00253-012-4309-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4309-4

Keywords