Applied Microbiology and Biotechnology

, Volume 97, Issue 1, pp 135–142 | Cite as

Controlling autonomous underwater floating platforms using bacterial fermentation

  • Justin C. Biffinger
  • Lisa A. Fitzgerald
  • Erinn C. Howard
  • Emily R. Petersen
  • Preston A. Fulmer
  • Peter K. Wu
  • Bradley R. Ringeisen
Biotechnological Products and Process Engineering


Biogenic gas has a wide range of energy applications from being used as a source for crude bio-oil components to direct ignition for heating. The current study describes the use of biogenic gases from Clostridium acetobutylicum for a new application—renewable ballast regeneration for autonomous underwater devices. Uninterrupted (continuous) and blocked flow (pressurization) experiments were performed to determine the overall biogas composition and total volume generated from a semirigid gelatinous matrix. For stopped flow experiments, C. acetobutylicum generated a maximum pressure of 55 psi over 48 h composed of 60 % hydrogen gas when inoculated in a 5 % agar (w/v) support with 5 % glucose (w/v) in the matrix. Typical pressures over 24 h at 318 K ranged from 10 to 33 psi. These blocked flow experiments show for the first time the use of microbial gas production as a way to repressurize gas cylinders. Continuous flow experiments successfully demonstrated how to deliver biogas to an open ballast control configuration for deployable underwater platforms. This study is a starting point for engineering and microbiology investigations of biogas which will advance the integration of biology within autonomous systems.


Clostridium acetobutylicum Hydrogen Pressure Ballast Fermentation 


  1. Biffinger JC, Ringeisen BR, Wu PK (2011) Enlisting bacteria to power autonomous water column sensors biogenic production of gases utilized in prototype for a truly autonomous zero power ballast control system. Seal Technol 52(10):29–32Google Scholar
  2. Chitre M, Shahabudeen S, Stojanovic M (2008) Underwater acoustic communications and networking: recent advances and future challenges. Mar Technol Soc J 42:103–116CrossRefGoogle Scholar
  3. Davila-Vazquez G, Arriaga S, Alatriste-Mondragon F, de Leon-Rodriguez A, Rosales-Colunga LM, Razo-Flores E (2008) Fermentative biohydrogen production: trends and perspectives. Rev Environ Sci Biotechnol 7:27–45CrossRefGoogle Scholar
  4. Fowler D, Pilegaard K, Sutton MA, Ambus P, Raivonen M, Duyzer J, Simpson D, Fagerli H, Fuzzi S, Schjoerring JK, Granier C, Neftel A, Isaksen ISA, Laj P, Maione M, Monks PS, Burkhardt J, Daemmgen U, Neirynck J, Personne E, Wichink-Kruit R, Butterbach-Bahl K, Flechard C, Tuovinen JP, Coyle M, Gerosa G, Loubet B, Altimir N, Gruenhage L, Ammann C, Cieslik S, Paoletti E, Mikkelsen TN, Ro-Poulsen H, Cellier P, Cape JN, Horvath L, Loreto F, Niinemets U, Palmer PI, Rinne J, Misztal P, Nemitz E, Nilsson D, Pryor S, Gallagher MW, Vesala T, Skiba U, Bruggemann N, Zechmeister-Boltenstern S, Williams J, O'Dowd C, Facchini MC, de Leeuw G, Flossman A, Chaumerliac N, Erisman JW (2009) Atmospheric composition change: ecosystems–atmosphere interactions. Atmos Environ 43(33):5193–5267CrossRefGoogle Scholar
  5. Girbal L, Croux C, Vasconcelos I, Soucaille P (1995) Regulation of metabolic shifts in Clostridium acetobutylicum ATCC 824. FEMS Microbiol Rev 17(3):287–297CrossRefGoogle Scholar
  6. Guo XM, Trably E, Latrille E, Carrere H, Steyer J-P (2010) Hydrogen production from agricultural waste by dark fermentation: a review. Int J Hydrogen Energy 35(19):10660–10673CrossRefGoogle Scholar
  7. Hazen RM, Boctor N, Brandes JA, Cody GD, Hemley RJ, Sharma A, Yoder HS Jr (2002) High pressure and the origin of life. J Phys Condens Matter 14(44):11489–11494CrossRefGoogle Scholar
  8. Hung C-H, Chang Y-T, Chang Y-J (2011) Roles of microorganisms other than Clostridium and Enterobacter in anaerobic fermentative biohydrogen production systems—a review. Bioresour Technol 102(18):8437–8444CrossRefGoogle Scholar
  9. Kalchayanand N, Dunne CP, Sikes A, Ray B (2004) Germination induction and inactivation of Clostridium spores at medium-range hydrostatic pressure treatment. Innov Food Sci Emerg Technol 5(3):277–283CrossRefGoogle Scholar
  10. Kengen SWM, Goorissen HP, Verhaart M, Stams AJM, van Niel EWJ, Claassen PAM (2009) Biological hydrogen production by anaerobic microorganisms. Biofuels: 197–221Google Scholar
  11. Kim YJ, Weigand WA (1992) Experimental analysis of a product inhibited fermentation in an aqueous two-phased system. Appl Biochem Biotechnol 34–35:419–430CrossRefGoogle Scholar
  12. Margosch D, Ehrmann MA, Buckow R, Heinz V, Vogel RF, Gaenzle MG (2006) High-pressure-mediated survival of Clostridium botulinum and Bacillus amyloliquefaciens endospores at high temperature. Appl Environ Microbiol 72(5):3476–3481CrossRefGoogle Scholar
  13. Montoya D, Arevalo C, Gonzales S, Aristizabal F, Schwarz WH (2001) New solvent-producing Clostridium sp. strains, hydrolyzing a wide range of polysaccharides, are closely related to Clostridium butyricum. J Ind Microbiol Biotechnol 27(5):329–335CrossRefGoogle Scholar
  14. Oh S-E, Zuo Y, Zhang H, Guiltinan MJ, Logan BE, Regan JM (2009) Hydrogen production by Clostridium acetobutylicum ATCC 824 and megaplasmid-deficient mutant M5 evaluated using a large headspace volume technique. Int J Hydrogen Energy 34(23):9347–9353CrossRefGoogle Scholar
  15. Osman MH, Shah AA, Walsh FC (2010) Recent progress and continuing challenges in bio-fuel cells. Part II: microbial. Biosens Bioelectron 26(3):953–963CrossRefGoogle Scholar
  16. Qian F, Morse DE (2011) Miniaturizing microbial fuel cells. Trends Biotechnol 29(2):62–69CrossRefGoogle Scholar
  17. Reimers CE, Girguis P, Stecher HA III, Tender LM, Ryckelynck N, Whaling P (2006) Microbial fuel cell energy from an ocean cold seep. Geobiology 4(2):123–136CrossRefGoogle Scholar
  18. Rezaei F, Richard TL, Brennan RA, Logan BE (2007) Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems. Environ Sci Technol 41(11):4053–4058CrossRefGoogle Scholar
  19. Saissac R, Brugiere JM, Raynaud M (1952) Pectinolytic activity of some anaerobic bacteria. Ann Inst Pasteur (Paris) 82:356–361Google Scholar
  20. Sharma A, Scott JH, Cody GD, Fogel ML, Hazen RM, Hemley RJ, Huntress WT (2002) Microbial activity at gigapascal pressures. Science (Washington, DC, U S) 295(5559):1514–1516CrossRefGoogle Scholar
  21. Tender LM, Reimers CE, Stecher HA, Holmes DE, Bond DR, Lowy DA, Pilobello K, Fertig SJ, Lovley DR (2002) Harnessing microbially generated power on the seafloor. Nat Biotechnol 20(8):821–825Google Scholar
  22. Valdez-Vazquez I, Rios-Leal E, Carmona-Martinez A, Munoz-Paez KM, Poggi-Varaldo HM (2006) Improvement of biohydrogen production from solid wastes by intermittent venting and gas flushing of batch reactors headspace. Environ Sci Technol 40(10):3409–3415CrossRefGoogle Scholar
  23. Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85(4):849–860CrossRefGoogle Scholar
  24. Wu PK, Fitzgerald LA, Biffinger JC, Spargo BJ, Houston BH, Bucaro JA, Ringeisen BR (2011) Zero-power autonomous buoyancy system controlled by microbial gas production. Rev Sci Instrum 82(5):055108/055101–055108/055107CrossRefGoogle Scholar
  25. Zhang H, Bruns MA, Logan BE (2006) Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor. Water Res 40(4):728–734CrossRefGoogle Scholar
  26. Zhang Z-P, Show K-Y, Tay J-H, Liang DT, Lee D-J (2008) Enhanced continuous biohydrogen production by immobilized anaerobic microflora. Energy Fuel 22(1):87–92CrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2012

Authors and Affiliations

  • Justin C. Biffinger
    • 1
  • Lisa A. Fitzgerald
    • 1
  • Erinn C. Howard
    • 1
    • 4
  • Emily R. Petersen
    • 2
  • Preston A. Fulmer
    • 1
  • Peter K. Wu
    • 3
  • Bradley R. Ringeisen
    • 1
  1. 1.Chemistry DivisionUS Naval Research LaboratoryWashingtonUSA
  2. 2.Nova Research, Inc.AlexandriaUSA
  3. 3.Department of PhysicsSouthern Oregon UniversityAshlandUSA
  4. 4.The Scientific Consulting Group, Inc.GaithersburgUSA

Personalised recommendations