Skip to main content

Advertisement

Log in

Combining in the melt physical and biological properties of poly(caprolactone) and chlorhexidine to obtain antimicrobial surgical monofilaments

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bacterial infections on a sutured wound represent a critical problem, and the preparation of suture threads possessing antimicrobial properties is valuable. In this work, poly(caprolactone) (PCL) monofilaments were compounded at the concentration of 1, 2 and 4 % (w/w), respectively, to the antiseptic chlorhexidine diacetate (CHX). The incorporation was carried out in the melt by a single-step methodology, i.e. “online” approach. Mechanical tests revealed that the incorporation of CHX does not significantly change tensile properties of PCL fibres as the thermal profile adopted to prepare the compounded fibres does not compromise the antibacterial activity of CHX. In fact, CHX confers to compounded PCL fibres’ antimicrobial property even at the lowest CHX concentration as revealed by microbiological assays performed on Escherichia coli, Micrococcus luteus and Bacillus subtilis strains. The scanning electron microscope micrographs and energy-dispersive X-ray analysis of compounded threads revealed that CHX is uniformly distributed on fibre surface and that the overall amount of superficial CHX increases by increasing compounded CHX concentration. This distribution determines a biphasic CHX release kinetics characterized by an initial rapid solubilisation of superficial CHX micro-crystals, followed by a slow and gradual release of CHX incorporated in the bulk. Interestingly, the compounded threads did not show any toxic effect compromising cell viability of human fibroblasts in vitro, differently from that observed using an equal amount of pure CHX. Thus, this study originally demonstrated the effectiveness of an “online” approach to confer antimicrobial properties to an organic thermoplastic polymeric material commonly used for medical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Arnold RR, Wei HH, Simmons E, Tallury P, Barrow DA, Kalachandra S (2008) Antimicrobial activity and local release characteristics of chlorhexidine diacetate loaded within the dental copolymer matrix, ethylene vinyl acetate. J Biomed Mater Res B Appl Biomater 86B:506–513

    Article  CAS  Google Scholar 

  • AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 24:279–290

    Article  Google Scholar 

  • Barber FA, Click JN (1992) The effect of inflammatory synovial fluid on the breaking strength of new “long lasting” absorbable sutures. Arthroscopy 8:437–441

    Article  CAS  Google Scholar 

  • Blaker JJ, Nazhat SN, Boccaccini AR (2004) Development and characterisation of silver-doped bioactive glass-coated sutures for tissue engineering and wound healing applications. Biomaterials 25:1319–1329

    Article  CAS  Google Scholar 

  • Chang YC, Huang FM, Tai KW, Chou MY (2001) The effect of sodium hypochlorite and chlorhexidine on cultured human periodontal ligament cells. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 92:446–450

    Article  CAS  Google Scholar 

  • Charuchinda A, Molloy R, Siripitayananon J, Molloy N, Sriyai M (2003) Factors influencing the small-scale melt spinning of poly(ε-caprolactone) monofilament fibres. Polym Int 52:1175–1181

    Article  CAS  Google Scholar 

  • Choong C, Yuan S, Thian ES, Oyane A, Triffitt J (2012) Optimization of poly(ε-caprolactone) surface properties for apatite formation and improved osteogenic stimulation. J Biomed Mater Res A 100A:353–361

    Article  CAS  Google Scholar 

  • Croisier F, Duwez AS, Jérôme C, Léonard AF, van der Werf KO, Dijkstra PJ, Bennink ML (2012) Mechanical testing of electrospun PCL fibers. Acta Biomater 8:218–224

    Article  CAS  Google Scholar 

  • Dance DAB, Pearson AD, Seal DV, Lowes JA (1987) A hospital outbreak caused by a chlorhexidine- and antibiotic-resistant Proteus mirabilis. J Hosp Infect 10:10–16

    Article  CAS  Google Scholar 

  • Douglas P, Andrews G, Jones D, Walker G (2010) Analysis of in vivo drug dissolution from PCL melt extrusion. Chem Eng J 164:359–370

    Article  CAS  Google Scholar 

  • Dubas ST, Wacharanad S, Potiyaraj P (2011) Tunning of the antimicrobial activity of surgical sutures coated with silver nanoparticles. Colloids Surf A Physicochem Eng Asp 380:25–28

    Article  CAS  Google Scholar 

  • Fong N, Simmons A, Poole-Warren LA (2010) Antibacterial polyurethane nanocomposites using chlorhexidine diacetate as an organic modifier. Acta Biomater 6:2554–2561

    Article  CAS  Google Scholar 

  • Guillaume O, Lavigne J-P, Lefranc O, Nottelet B, Coudane J, Garric X (2011) New antibiotic-eluting mesh used for soft tissue reinforcement. Acta Biomater 7:3390–3397

    Article  CAS  Google Scholar 

  • Gupta B, Anjum N, Gulrez SKH, Singh H (2007) Development of antimicrobial polypropylene sutures by graft copolymerization. II. Evaluation of physical properties, drug release, and antimicrobial activity. J Appl Polym Sci 103:3534–3538

    Article  CAS  Google Scholar 

  • Gupta B, Jain R, Singh H (2008) Preparation of antimicrobial sutures by preirradiation grafting onto polypropylene monofilament. Polym Adv Technol 19:1698–1703

    Article  CAS  Google Scholar 

  • Hammond SA, Morgan JR, Russell AD (1987) Comparative susceptibility of hospital isolates of gram-negative bacteria to antiseptics and disinfectants. J Hosp Infect 9:255–264

    Article  CAS  Google Scholar 

  • Harnet JC, Le Guen E, Ball V, Tenenbaum H, Ogier J, Haikel Y, Vodouhê C (2009) Antibacterial protection of suture material by chlorhexidine-functionalized polyelectrolyte multilayer films. J Mater Sci Mater Med 20:185–193

    Article  CAS  Google Scholar 

  • Hidalgo E, Dominguez C (2001) Mechanisms underlying chlorhexidine-induced cytotoxicity. Toxicol in Vitro 15:271–276

    Article  CAS  Google Scholar 

  • Hiraishi N, Yiu CKY, King NM, Tay FR, Pashley DH (2008) Chlorhexidine release and water sorption characteristics of chlorhexidine-incorporated hydrophobic/hydrophilic resins. Dent Mater 24:1391–1399

    Article  CAS  Google Scholar 

  • Hu W, Huang Z-M, Liu X-Y (2010) Development of braided drug-loaded nanofiber sutures. Nanotechnology 21:315104, art. n

    Article  Google Scholar 

  • Huynh TTN, Padois K, Sonvico F, Rossi A, Zani F, Pirot F, Doury J, Falson F (2010) Characterization of a polyurethane-based controlled release system for local delivery of chlorhexidine diacetate. Eur J Pharm Biopharm 74:255–264

    Article  CAS  Google Scholar 

  • Kenawy ER, Worley SD, Broughton R (2007) The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules 8:1359–1384

    Article  CAS  Google Scholar 

  • Leaper D, Assadian O, Hubner N-O, McBain A, Barbolt T, Rothenburger S, Wilson P (2011) Antimicrobial sutures and prevention of surgical site infection: assessment of the safety of the antiseptic triclosan. Int Wound J 8:556–566

    Article  Google Scholar 

  • Leung D, Spratt DA, Pratten J, Gulabivala K, Mordan NJ, Young AM (2005) Chlorhexidine releasing methacrylate dental composite materials. Biomaterials 26:7145–7153

    Article  CAS  Google Scholar 

  • Li W-J, Danielson KG, Alexander PG, Tuan RS (2003) Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(ε-caprolactone) scaffolds. J Biomed Mater Res A 67:1105–1114

    Article  Google Scholar 

  • Liu H, Leonas KK, Zhao Y (2010) Antimicrobial properties and release profile of ampicillin from electrospun poly(ε-caprolactone) nanofiber yarns. J Eng Fiber Fabr 5:10–19

    CAS  Google Scholar 

  • Luong-Van E, Grøndahl L, Chua KN, Leong KW, Nurcombe V, Cool SM (2006) Controlled release of heparin from poly(ε-caprolactone) electrospun fibers. Biomaterials 27:2042–2050

    Article  CAS  Google Scholar 

  • Martin D, Leonardo M (1994) Microscopic quantitation of apoptotic index and cell viability using vital and fluorescent dyes. In: Coligan JE, Kruisbeek AM, Margulies D, Shevach EM, Strober W (eds) Current protocols in immunology. Wiley, New York, pp 3.17.1–3.17.39

    Google Scholar 

  • Masini BD, Stinner DJ, Waterman SM, Wenke JC (2011) Bacterial adherence to suture materials. J Surg Educ 68:101–104

    Article  Google Scholar 

  • McDonnell G, Russell D (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12:147–179

    CAS  Google Scholar 

  • Mishell BB, Shiigi SM (1980) Selected methods in cellular immunology. Freeman, San Francisco, pp 16–19

    Google Scholar 

  • Nostro A, Scaffaro R, Ginestra G, D’Arrigo M, Botta L, Marino A, Bisignano G (2010) Control of biofilm formation by polyethylene-co-vinyl acetate films incorporating nisin. Appl Microbiol Biotechnol 87:729–737

    Article  CAS  Google Scholar 

  • Nostro A, Scaffaro R, D’Arrigo M, Botta L, Filocamo A, Marino A, Bisignano G (2012) Study on carvacrol and cinnamaldehyde polymeric films: mechanical properties, release kinetics and antibacterial and antibiofilm activities. Appl Microbiol Biotechnol. doi:10.1007/s00253-012-4091-3

  • Oh WK, Kim S, Yoon H, Jang J (2010) Shape-dependent cytotoxicity and proinflammatory response of poly(3,4-ethylenedioxythiophene) nanomaterials. Small 6:872–879

    Article  CAS  Google Scholar 

  • Perale G, Casalini T, Barri V, Müller M, Maccagnan S, Masi M (2010) Lidocaine release from polycaprolactone threads. Appl Polym Sci 117:3610–3614

    CAS  Google Scholar 

  • Pollini M, Russo M, Licciulli A, Sannino A, Maffezzoli A (2009) Characterization of antibacterial silver coated yarns. J Mater Sci Mater Med 20:2361–2366

    Article  CAS  Google Scholar 

  • Russell AD, Day MJ (1993) Antibacterial activity of chlorhexidine. J Hosp Infect 25:229–238

    Article  CAS  Google Scholar 

  • Saxena S, Ray AR, Kapil A, Pavon-Djavid G, Letourneur D, Gupta B, Meddahi-Pellé A (2011) Development of a new polypropylene-based suture: plasma grafting, surface treatment, characterization, and biocompatibility studies. Macromol Biosci 11:373–382

    Article  CAS  Google Scholar 

  • Scaffaro R, Botta L, Marineo S, Puglia AM (2011) Incorporation of nisin in poly (ethylene-co-vinyl acetate) films by melt processing: a study on the antimicrobial properties. J Food Prot 74:1137–1143

    Article  CAS  Google Scholar 

  • Scaffaro R, Botta L, Gallo G (2012) Photo-oxidative degradation of poly(ethyleneco-vinyl acetate)/nisin antimicrobial films. Polym Degrad Stab 97:653–660

    Article  CAS  Google Scholar 

  • Teo EY, Ong S-Y, Khoon Chong MS, Zhang Z, Lu J, Moochhala S, Ho B, Teoh S-H (2011) Polycaprolactone-based fused deposition modelled mesh for delivery of antibacterial agents to infected wounds. Biomaterials 32:279–287

    Article  CAS  Google Scholar 

  • Zhukovskii VA, Khokhlova VA, Korovicheva SY (2007) Surgical suture materials with antimicrobial properties. Fibre Chem 39:136–143

    Article  CAS  Google Scholar 

  • Zurita R, Puiggalí J, Rodríguez-Galán A (2006) Triclosan release from coated polyglycolide threads. Macromol Biosci 6:58–69

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by INSTM and by PON01_01287 to RS and partially by the Italian Ministry of Education, University and Research (MIUR, ex 60 %) to AMP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Scaffaro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1783 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scaffaro, R., Botta, L., Sanfilippo, M. et al. Combining in the melt physical and biological properties of poly(caprolactone) and chlorhexidine to obtain antimicrobial surgical monofilaments. Appl Microbiol Biotechnol 97, 99–109 (2013). https://doi.org/10.1007/s00253-012-4283-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4283-x

Keywords

Profiles

  1. R. Scaffaro