The effect of iron-chelating agents on Magnetospirillum magneticum strain AMB-1: stimulated growth and magnetosome production and improved magnetosome heating properties

Abstract

The introduction of various iron-chelating agents to the Magnetospirillum magneticum strain AMB-1 bacterial growth medium stimulated the growth of M. magneticum strain AMB-1 magnetotactic bacteria and enhanced the production of magnetosomes. After 7 days of growth, the number of bacteria and the production of magnetosomes were increased in the presence of iron-chelating agents by factors of up to ∼2 and ∼6, respectively. The presence of iron-chelating agents also produced an increase in magnetosome size and chain length and yielded improved magnetosome heating properties. The specific absorption rate of suspensions of magnetosome chains isolated from M. magneticum strain AMB-1 magnetotactic bacteria, measured under the application of an alternating magnetic field of average field strength ∼20 mT and frequency 198 kHz, increased from ∼222 W/gFe in the absence of iron-chelating agent up to ∼444 W/gFe in the presence of 4 μM rhodamine B and to ∼723 W/gFe in the presence of 4 μM EDTA. These observations were made at an iron concentration of 20 μM and iron-chelating agent concentrations below 40 μM.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Alphandéry E, Ngo AT, Lefèvre C, Lisiecki I, Wu LF, Pileni MP (2008) Difference between the magnetic properties of the magnetotactic bacteria and those of the extracted magnetosomes: influence of the distance between the chains of magnetosomes. J Phys Chem 112:12304–12309

    Google Scholar 

  2. Alphandéry E, Faure S, Seksek O, Guyot F, Chebbi I (2011) Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano 5:6279–6296

    Article  Google Scholar 

  3. Arakaki A, Nakazawa H, Nemoto M, Mori T, Matsunaga T (2008) Formation of magnetite by bacteria and its application. J R Soc Interface 5:977–999

    Article  CAS  Google Scholar 

  4. Bazylinski DA, Frankel RB (2004) Magnetosome formation in prokaryotes. Nat Rev Microbiol 2:217–230

    Article  CAS  Google Scholar 

  5. Bordelon DE, Cornejo C, Grüttner C, Westphal F, DeWeese TL, Ivkov R (2011) Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized with wide ranging and high amplitude alternating magnetic fields. J Appl Phys 109:124904

    Article  Google Scholar 

  6. Calugay RJ, Miyashita H, Okamura Y, Matsunaga T (2003) Siderophore production by the magnetic bacterium Magnetospirillum magneticum AMB-1 FEMS. Microbiol Lett 218:371–375

    Article  CAS  Google Scholar 

  7. Guo F, Liu Y, Chen Y, Tang T, Jiang W, Li Y, Li J (2011) A novel rapid and continuous procedure for large-scale purification of magnetosomes from Magnetospirillum gryphiswaldense. Appl Microbiol Biotechnol 90:1277–1283

    Article  CAS  Google Scholar 

  8. Heyen U, Schüler D (2003) Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Appl Microbiol Biotechnol 61:536–544

    CAS  Google Scholar 

  9. Komeili A (2006) Cell biology of magnetosome formation. Microbiol Monogr 3:163–174

    Article  Google Scholar 

  10. Kundu S, Kulkarni GR (2010) Enhancement of magnetotactic bacterial yield in a modified MSGM medium without alteration of magnetosomes properties. Indian J Exp Bio 48:518–523

    Google Scholar 

  11. Lang C, Schüler D (2006) Biogenic nanoparticles: production, characterization, and application of bacterial magnetosomes. J Phys Condens Matter 18:S2815–S2828

    Article  CAS  Google Scholar 

  12. Liu Y, Li GR, Guo F, Jiang W, Li Y, Li LJ (2010) Large-scale production of magnetosomes by chemostat culture of Magnetospirillum gryphiswaldense at high cell density. Microbial Cell Factories 9:99

    Article  Google Scholar 

  13. Matsunaga T, Tadokoro F, Nakamura N (1990) Mass culture of magnetic bacteria and their application to flow type immunoassays. IEE Trans Mag 26:1557–1559

    Article  CAS  Google Scholar 

  14. Matsunaga T, Kawasaki M, Yu X, Tsujimura N, Nakamura N (1996a) Chemiluminescence enzyme immunoassay using bacterial magnetic particles. Anal Chem 68:3551–3554

    Article  CAS  Google Scholar 

  15. Matsunaga T, Tsujimura N, Kamiya S (1996b) Enhancement of magnetic particle production by nitrate and succinate fed-batch culture of Magnetospirillum sp. AMB-1. Biotechnol Tech 10:495–500

    Article  CAS  Google Scholar 

  16. Matsunaga T, Togo H, Tanaka T (2000) Production of luciferase-magnetic particle complex by recombinant Magnetospirillum sp. AMB-1. Biotechnol Bioeng 70:704–709

    Article  CAS  Google Scholar 

  17. Reichard PU, Kretzschmar R, Kraemer SM (2007) Dissolution mechanisms of goethite in the presence of siderophores and organic acids. Geochim Cosmochim Acta 71:5635–5650

    Article  CAS  Google Scholar 

  18. Schüler D, Bauerlein E (1996) Iron-limited growth and kinetics of iron uptake in Magnetospirillum gryphiswaldense. Arch Microbiol 166:301–307

    Article  Google Scholar 

  19. Sun JB, Duan JH, Dai SL, Ren J, Zhang YD, Tim JS, Li Y (2007) In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMS) on H22 cells: the magnetic bio-nanoparticles as drug carriers. Cancer Lett 258:109–117

    Article  CAS  Google Scholar 

  20. Sun JB, Zhao F, Tang T, Jiang W, Tian JS, Li Y, Li JL (2008) High-yield growth and magnetosome formation by Magnetospirillum gryphiswaldense MSR-1 in an oxygen-controlled fermentor supplied solely with air. Appl Microbiol Biotechnol 79:389–397

    Article  CAS  Google Scholar 

  21. Yang CD, Takeyama H, Tanaka T, Matsunaga T (2001a) Effects of growth medium composition, iron sources and atmospheric oxygen concentrations on production of luciferase-bacterial magnetic particle complex by a recombinant Magnetospirillum magneticum AMB-1. Enz Microb Tech 29:13–19

    Article  CAS  Google Scholar 

  22. Yang C, Takeyama H, Matsunaga T (2001b) Iron feeding optimization and plasmid stability in production of recombinant bacterial magnetic particles by Magnetospirillum magneticum AMB-1 in fed-batch culture. J Biosci Bioeng 2:213–216

    Google Scholar 

  23. Yang CD, Takeyama H, Tanaka T, Hasegawa A, Matsunaga T (2001c) Synthesis of bacterial magnetic particles during cell cycle of Magnetospirillum magneticum AMB-1. Appl Biochem Biotech 91:155–160

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Edouard Alphandéry.

Additional information

F. Guyot and M. Amor claim having no inventive contribution to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1603 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alphandéry, E., Amor, M., Guyot, F. et al. The effect of iron-chelating agents on Magnetospirillum magneticum strain AMB-1: stimulated growth and magnetosome production and improved magnetosome heating properties. Appl Microbiol Biotechnol 96, 663–670 (2012). https://doi.org/10.1007/s00253-012-4199-5

Download citation

Keywords

  • Magnetosomes
  • Magnetotactic bacteria
  • Iron-chelating agents
  • Siderophore
  • Magnetic hyperthermia
  • Alternating magnetic field