Skip to main content
Log in

Surviving in the presence of sulphur dioxide: strategies developed by wine yeasts

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Sulphur dioxide has been used as a common preservative in wine since at least the nineteenth century. Its use has even become essential to the making of quality wines because of its antioxidant, antioxidasic and antiseptic properties. The chemistry of SO2 in wine is fairly complex due to its dissociation into different species and its binding to other compounds produced by yeasts and bacteria during fermentation. The only antiseptic species is the minute part remaining as molecular SO2. The latter concentration is both dependent on pH and concentration of free bisulphite. However, certain yeast species have developed cellular and molecular mechanisms as a response to SO2 exposure. Some of these mechanisms are fairly complex and have only been investigated recently, at least for the molecular mechanisms. They include sulphite reduction, sulphite oxidation, acetaldehyde production, sulphite efflux and the entry into viable but not culturable state, as the ultimate response. In this review, the chemistry of SO2 in wine is explained together with the impact of SO2 on yeast cells. The different defence mechanisms are described and discussed, mostly based on current knowledge available for Saccharomyces cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aa E, Townsend JP, Adams RI, Nielsen KM, Taylor JW (2006) Population structure and gene evolution in Saccharomyces cerevisiae. FEMS Yeast Res 6:702–715

    Article  CAS  Google Scholar 

  • Agnolucci M, Rea F, Sbrana C, Cristani C, Fracassetti D, Tirelli A, Nuti M (2010) Sulphur dioxide affects culturability and volatile phenol production by Brettanomyces/Dekkera bruxellensis. Int J Food Microbiol 143:76–80

    Article  CAS  Google Scholar 

  • Anacleto J, van Uden N (1982) Kinetics and activation energetics of death in Saccharomyces cerevisiae induced by sulfur dioxide. Biotechnol Bioeng 24:2477–2486

    Article  CAS  Google Scholar 

  • Aranda A, del Olmo M (2004) Exposure to acetaldehyde in yeast determines an induction of sulfur amino acid metabolism and polyamine transporter genes, which depends on Met4p and Haa1p transcription factors, respectively. Appl Environ Microbiol 70:1913–1922

    Article  CAS  Google Scholar 

  • Aranda A, Jimenez-Marti E, Orozco H, Matallana E, Del Olmo M (2006) Sulfur and adenine metabolisms are linked, and both modulate sulfite resistance in wine yeast. J Agric Food Chem 54:5839–5846

    Article  CAS  Google Scholar 

  • Avram D, Bakalinsky AT (1996) FZF1 (SUL1) suppresses sulfite sensitivity but not the glucose derepression or aberrant cell morphology of a grr1 mutant of Saccharomyces cerevisiae. Genetics 144:511–521

    CAS  Google Scholar 

  • Avram D, Bakalinsky AT (1997) SSU1 encodes a plasma membrane protein with a central role in a network of proteins conferring sulfite tolerance in Saccharomyces cerevisiae. J Bacteriol 179:5971–5974

    CAS  Google Scholar 

  • Avram D, Leid M, Bakalinsky AT (1999) Fzf1p of Saccharomyces cerevisiae is a positive regulator of SSU1 transcription and its first zinc finger region is required for DNA binding. Yeast 15:473–480

    Article  CAS  Google Scholar 

  • Bailey RB, Woodword A (1984) Isoaltion and characterization of a pleiotropic glucose repression resistance mutant of Saccharomyces cerevisiae. Mol Gen Genet 193:507–512

    Article  CAS  Google Scholar 

  • Bakker J, Bridle P, Bellworthy SJ, Garcia-Viguera C, Reade HP, Watkins SJ (1998) Effect of sulphur dioxide and must extraction on colour, phenolic composition and sensory quality of red table wine. J Sci Food Agric 78:297–307

    Article  CAS  Google Scholar 

  • Baldwin GN (1951) Basic effect of sulphur dioxide on yeast growth. Am J Enol Vitic 2:43–53

    Google Scholar 

  • Barata A, Caldeira J, Botelheiro R, Pagliara D, Malfeito-Ferreira M, Loureiro V (2008) Survival patterns of Dekkera bruxellensis in wines and inhibitory effect of sulphur dioxide. Int J Food Microbiol 121:201–207

    Article  CAS  Google Scholar 

  • Barral Y, Jentsch S, Mann C (1995) G1 cyclin turnover and nutrient uptake are controlled by a common pathway in yeast. Genes Dev 9:399–409

    Article  CAS  Google Scholar 

  • Bartowsky EJ, Pretorius IS (2009) Microbial formation and modification of flavor and off-flavor compounds in wine. In: König H, Unden G, Fröhlich J (eds) Biology of microorganisms on grapes, in must and in wine. Springer, Berlin, pp 209–232

    Chapter  Google Scholar 

  • Beck-Speier I, Hinze H, Holzer H (1985) Effect of sulfite on the energy metabolism of mammalian tissues in correlation to sulfite oxidase activity. Biochim Biophys Act Gen Subj 841:81–89

    Article  CAS  Google Scholar 

  • Beech FW, Thomas S (1985) Action antimicrobienne de l’anhydride sulfureux. Bull OIV 652–653:564–581

    Google Scholar 

  • Bleve G, Rizzotti L, Dellaglio F, Torriani S (2003) Development of reverse-transcription (RT)-PCR and real-time RT-PCR assays for rapid detection and quantification of viable yeasts and molds contaminating yogurts and pasteurized food products. Appl Environ Microbiol 69:4116–4122

    Article  CAS  Google Scholar 

  • Booth IR (2002) Stress and the single cell: intrapopulation diversity is a mechanism to ensure survival upon exposure to stress. Int J Food Microbiol 16:365–375

    Google Scholar 

  • Burroughs LF (1975) Determining free sulfur dioxide in red wine. Am J Enol Vitic 26:25–29

    CAS  Google Scholar 

  • Carmack M, Moore MB, Balis ME (1950) The structure of the antihemorrhagic sodium bisulfite addition product of 2-methyl-1,4-naphthoquinone (menadione). J Am Chem Soc 72:844–847

    Article  CAS  Google Scholar 

  • Casalone E, Colella CM, Ricci F, Polsinelli M (1989) Isolation and characterization of Saccharomyces cerevisiae mutants resistant to sulphite. Yeast 5 Spec No:S287–291

  • Casalone E, Colella CM, Daly S, Gallori E, Moriani L, Polsinelli M (1992) Mechanism of resistance to sulfite in Saccharomyces cerevisiae. Curr Genet 22:435–440

    Article  CAS  Google Scholar 

  • Casalone E, Colella CM, Daly S, Fontana S, Torricelli I, Polsinelli M (1994) Cloning and characterization of a sulfite resistant gene of Saccharomyces cerevisiae. Yeast 10:1101–1110

    Article  CAS  Google Scholar 

  • Charles A, Suzuki I (1966) Purification and properties of sulfite: cytochrome c oxidoreductase from Thiobacillus novellus. Biochim Biophys Acta 128:522–534

    Article  Google Scholar 

  • Conklin DS, Kung C, Culbertson MR (1993) The COT2 gene is required for glucose-dependent divalent cation transport in Saccharomyces cerevisiae. Mol Cell Biol 13:2041–2049

    CAS  Google Scholar 

  • Del Mar LM, Pierobon S, Tafi MC, Signoretto C, Canepari P (2000) mRNA detection by reverse-transcription-PCR for monitoring viability over time in an Enterococcus faecalis viable but nonculturable population maintained in a laboratory microcosm. Appl Environ Microbiol 66:4564–4567

    Article  Google Scholar 

  • Divol B, Lonvaud-Funel A (2005) Evidence for viable but nonculturable yeasts in botrytis affected wine. J Appl Microbiol 99:85–93

    Article  CAS  Google Scholar 

  • Divol B, Miot-Sertier C, Lonvaud-Funel A (2006) Genetic characterization of strains of Saccharomyces cerevisiae responsible for ‘refermentation’ in Botrytis-affected wines. J Appl Microbiol 100:516–526

    Article  CAS  Google Scholar 

  • Donalies UEB, Stahl U (2002) Increasing sulphite formation in Saccharomyces cerevisiae by overexpression of MET14 and SSU1. Yeast 19:475–484

    Article  CAS  Google Scholar 

  • du Toit WJ, Pretorius IS, Lonvaud-Funel A (2005) The effect of sulphur dioxide and oxygen on the viability and culturability of a strain of Acetobacter pasteurianus and a strain of Brettanomyces bruxellensis isolated from wine. J Appl Microbiol 98:862–871

    Article  CAS  Google Scholar 

  • Erickson JR, Johnston M (1994) Suppressors reveal two classes of glucose repression genes in the yeast Saccharomyces cerevisiae. Genetics 136:1271–1278

    CAS  Google Scholar 

  • Feng C, Tollin G, Enemark JH (2007) Sulfite oxidizing enzymes. Biochi Biophys Acta Prot Proteome 1774:527–539

    Article  CAS  Google Scholar 

  • Flick JS, Johnston M (1991) GRR1 of Saccharomyces cerevisiae is required for glucose repression and encodes a protein with leucine-rich repeats. Mol Cell Biol 11:5101–5115

    CAS  Google Scholar 

  • Freese E, Sheu CW, Galliers E (1973) Function of lipophilic acids as antimicrobial food additives. Nature 241:321–325

    Article  CAS  Google Scholar 

  • Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J (2005) Prokaryotic sulfur oxidation. Curr Opin Microbiol 8:253–259

    Article  CAS  Google Scholar 

  • Frivik SK, Ebeler SE (2003) Influence of sulfur dioxide on the formation of aldehydes in white wine. Am J Enol Vitic 54:31–38

    CAS  Google Scholar 

  • Giraffa G (2004) Studying the dynamics of microbial populations during food fermentation. FEMS Microbiol Rev 28:251–260

    Article  CAS  Google Scholar 

  • Goto-Yamamoto N, Kitano K, Shiki K, Yoshida Y, Suzuki T, Iwata T, Yamane Y, Hara S (1998) SSU1-R, a sulfite resistance gene of wine yeast, is an allele of SSU1 with a different upstream sequence. J Ferment Bioeng 86:427–433

    Article  CAS  Google Scholar 

  • Hänsch R, Lang C, Rennenberg H, Mendel RR (2007) Significance of plant sulfite oxidase. Plant Biol (Stutt) 9:589–595

    Article  CAS  Google Scholar 

  • Heimberg M, Fridovich I, Handler P (1953) The enzymatic oxidation of sulfite. J Biol Chem 204:913–926

    CAS  Google Scholar 

  • Hellborg L, Piskur J (2009) Complex nature of the genome in a wine spoilage yeast, Dekkera bruxellensis. Eukaryot Cell 8:1739–1749

    Article  CAS  Google Scholar 

  • Henick-Kling T, Edinger W, Daniel P, Monk P (1998) Selective effects of sulfur dioxide and yeast starter culture addition on indigenous yeast populations and sensory characteristics of wine. J Appl Microbiol 84:865–876

    Article  CAS  Google Scholar 

  • Herrero M, Garcia LA, Diaz M (2003) The effect of SO2 on the production of ethanol, acetaldehyde, organic acids and flavor volatiles during industrial cider fermentation. J Agric Food Chem 51:3455–3459

    Google Scholar 

  • Hinze H, Holzer H (1986) Analysis of the energy metabolism after incubation of Saccharomyces cerevisiae with sulfite or nitrite. Arch Microbiol 145:27–31

    Article  CAS  Google Scholar 

  • Hohmann S, Mager PWH (2003) Yeast stress responses. Springer, Berlin

    Book  Google Scholar 

  • Imai T, Ohno T (1995) The relationship between viability and intracellular pH in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol 61:3604–3608

    CAS  Google Scholar 

  • Ingram M (1948) The germicidal effect of free and combined sulphur dioxide. J Soc Chem Ind (London) 67:18–21

    Article  CAS  Google Scholar 

  • Kappler U, Dahl C (2001) Enzymology and molecular biology of prokaryotic sulfite oxidation. FEMS Microbiol Lett 203:1–9

    CAS  Google Scholar 

  • Kåtgedal B, Kӓllberg M, Sörbo B (1986) A possible involvement of glutathione in the detoxification of sulfite. Biochem Biophys Res Comm 136:1036–1041

    Article  Google Scholar 

  • Kell DB, Kaprelysants AS, Weichart DH, Harwood CR, Barer MR (1998) Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Antonie Leeuwenhoek 73:169–187

    Article  CAS  Google Scholar 

  • Kim YJ, Francisco L, Chen GC, Marcotte E, Chan CS (1994) Control of cellular morphogenesis by the Ip12/Bem2 GTPase-activating protein: possible role of protein phosphorylation. J Cell Biol 127:1381–1394

    Article  CAS  Google Scholar 

  • Kobayashi K, Yoshimoto A (1982) Studies on yeast sulfite reductase. IV. Structure and steady-state kinetics. Biochim Biophys Act Bioenerg 705:348–356

    Article  CAS  Google Scholar 

  • Kurek EJ (1985) Properties of an enzymatic complex active in sulfite and thiosulfate oxidation by Rhodotorula sp. Arch Microbiol 143:277–282

    Article  CAS  Google Scholar 

  • Ladrey C (1871) L’art de faire le vin. Imprimerie J.E. Rabutot, Dijon, France

  • Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, Davey RP, Roberts IN, Burt A, Koufopanou V, Tsai IJ, Bergman CM, Bensasson D, O’Kelly MJT, van Oudenaarden A, Barton DBH, Bailes E, Nguyen Ba AN, Jones M, Quail MA, Goodhead I, Sims S, Smith F, Blomberg A, Durbin R, Louis EJ (2009) Population genomics of domestic and wild yeasts. Nature 458:337–341

    Article  CAS  Google Scholar 

  • Liu S-Q, Pilone GJ (2000) An overview of formation and roles of acetaldehyde in winemaking with emphasis on microbiological implications. Int J Food Sci Technol 35:49–61

    Article  CAS  Google Scholar 

  • Macris BJ, Markakis P (1974) Transport and toxicity of sulphur dioxide in Saccharomyces cerevisiae var. ellipsoideus. J Sci Food Agric 25:21–29

    Article  CAS  Google Scholar 

  • Maier K, Hinze H, Leuschel L (1986) Mechanism of sulfite action on the energy metabolism of Saccharomyces cerevisiae. Biochim Biophys Act Bioenerg 848:120–130

    Article  CAS  Google Scholar 

  • Mannervik B, Persson G, Eriksson S (1974) Enzymatic catalysis of the reversible sulfitolysis of glutathione disulfide and the biological reduction of thiosulfate esters. Arch Biochem Biophys 163:283–289

    Article  CAS  Google Scholar 

  • Meng Z, Zhang L (1992) Cytogenetic damage induced in human lymphocytes by sodium bisulfite. Mutat Res Genet Toxic 298:63–69

    Article  CAS  Google Scholar 

  • Millet V, Lonvaud-Funel A (2000) The viable but non-culturable state of wine micro-organisms during storage. Lett Appl Microbiol 30:136–141

    Article  CAS  Google Scholar 

  • Mills DA, Johannsen EA, Cocolin L (2002) Yeast diversity and persistence in Botrytis-affected wine fermentations. Appl Environ Microbiol 68:4884–4893

    Article  CAS  Google Scholar 

  • Mukai F, Hawryluk I, Shapiro R (1970) The mutagenic specificity of sodium bisulfite. Biochem Biophys Res Comm 39:983–988

    Article  CAS  Google Scholar 

  • Nardi T, Corich V, Giacomini A, Blondin B (2010) A sulphite-inducible form of the sulphite efflux gene SSU1 in a Saccharomyces cerevisiae wine yeast. Microbiology 156:1686–1696

    Article  CAS  Google Scholar 

  • Oliver JD (1993) Formation of viable but nonculturable cells. In: Kjelleberg S (ed) Starvation in bacteria. Plenum Press, New York, pp 239–272

    Google Scholar 

  • Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43:93–100

    Google Scholar 

  • Oliver JD (2010) Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol Rev 34:415–425

    CAS  Google Scholar 

  • Pagano DA, Zeiger E (1987) Conditions affecting the mutagenicity of sodium bisulfite in Salmonella typhimurium. Mutat Res Fundam Mol Mech Mutag 179:159–166

    Article  CAS  Google Scholar 

  • Pagano DA, Zeiger E, Stark AA (1990) Autoxidation and mutagenicity of sodium bisulfite. Mutat Res Fundam Mol Mech Mutag 228:89–96

    Article  CAS  Google Scholar 

  • Park H, Bakalinsky AT (2000) SSU1 mediates sulphite efflux in Saccharomyces cerevisiae. Yeast 16:881–888

    Article  CAS  Google Scholar 

  • Park H, Bakalinsky AT (2004) Evidence for sulfite proton symport in Saccharomyces cerevisiae. J Microbiol Biotechnol 14:967–971

    CAS  Google Scholar 

  • Park H, Hwang YS (2008) Genome-wide transcriptional responses to sulfite in Saccharomyces cerevisiae. J Microbiol 46:542–548

    Article  CAS  Google Scholar 

  • Pasteur L (1866) Etudes sur le vin. Imprimerie Impériale, Paris

    Google Scholar 

  • Peneau S, Chassaing D, Carpentier B (2007) First evidence of division and accumulation of viable but nonculturable Pseudomonas fluorescens cells on surfaces subjected to conditions encountered at meat processing premises. Appl Environ Microbiol 73:2839–2846

    Article  CAS  Google Scholar 

  • Perez-Ortin JE, Querol A, Puig S, Barrio E (2002) Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains. Genome Res 12:1533–1539

    Article  CAS  Google Scholar 

  • Peynaud E, Lafourcade S (1952) Les conditions d'emploi de l'anhydride sulfureux dans les vins liquoreux. Bull OIV 252:110–120

    Google Scholar 

  • Pilkington BJ, Rose AH (1988) Reaction of Saccharomyces cerevisiae and Zygosaccharomyces bailii to sulfite. J Gen Microbiol 134:2823–2830

    CAS  Google Scholar 

  • Postgate JR (1969) Viable counts and viability. Meth Microbiol 1:611–628

    Article  Google Scholar 

  • Prakash D, Hinze H, Holzer H (1986) Synergistic effect of m-chloro-peroxybenzoic acid, sulfite and nitrite on the energy metabolism of Saccharomyces cerevisiae. FEMS Microbiol Lett 34:305–308

    CAS  Google Scholar 

  • Rahn O, Conn JE (1944) Effect of increase in acidity on antiseptic efficiency. Ind Eng Chem 36:185–187

    Article  CAS  Google Scholar 

  • Rankine BC, Pocock KF (1969) Influence of yeast strain on binding of sulphur dioxide in wines, and on its formation during fermentation. J Sci Food Agric 20:104–109

    Article  CAS  Google Scholar 

  • Rehm JH, Wittmann H (1962) Beitrag zur Kenntnis der antimikrobiellen Wirkung der schwefligen Säure. I. Übersicht uber einflussnehmende Faktoren auf die antimikrobiellen Wirkung der schwefligen Säure. Z Lebensmittelunters u-Forsch 118:413–429

    Article  CAS  Google Scholar 

  • Rehm JH, Wittmann H (1963) Beitrag zur Kenntnis der antimikrobiellen Wirkung der schwefligen Säure. II. Die Wirkung der dissoziierten und undissoziierten Säure auf verschiedene Mikroorganismen. Z Lebensmittelunters u-Forsch 120:465–478

    Article  CAS  Google Scholar 

  • Ribéreau-Gayon J, Peynaud E (1960) Traité d'œnologie Tome 1. Paris et Liege Librarie Polytechnique Ch. Béranger, Paris

  • Ripper M (1892) Die schweflige Säure im Weine und deren Bestimmung. J Prakt Chem 46:428–473

    Article  Google Scholar 

  • Romano P, Tini V (1975) Intensita e stabilita della resistenza alla SO2 in ceppi selvaggi di Saccharomyces ellipsoideus. Riv Sci Tecnol Alimenti Nutr Um 5:245–246

    CAS  Google Scholar 

  • Sardessai YN (2005) Viable but non-culturable bacteria: their impact on public health. Curr Sci 89:1650

    Google Scholar 

  • Sarver A, DeRisi J (2005) Fzf1p regulates an inducible response to nitrosative stress in Saccharomyces cerevisiae. Mol Biol Cell 16:4781–4791

    Article  CAS  Google Scholar 

  • Schimz K-L (1980) The effect of sulfite on the yeast Saccharomyces cerevisiae. Arch Microbiol 125:89–95

    Article  CAS  Google Scholar 

  • Schimz K-L, Holzer H (1979) Rapid decrease of ATP content in intact cells of Saccharomyces cerevisiae after incubation with low concentrations of sulfite. Arch Microbiol 121:225–229

    Article  CAS  Google Scholar 

  • Serpaggi V, Remize F, Sequeira-Le Grand A, Alexandre H (2010a) Specific identification and quantification of the spoilage microorganism Brettanomyces in wine by flow cytometry: a useful tool for winemakers. Cytometry 77A:497–499

    Article  CAS  Google Scholar 

  • Serpaggi V, Remize F, Sequeira-Le Grand A, Alexandre H (2010b) The “viable but non culturable” state in spoilage yeast Brettanomyces: a risk for winemakers? 14th Australian Wine Industry Technical Conference, Adelaide

  • Serpaggi V, Remize F, Recorbet G, Gaudot-Dumas E, Sequeira-Le Grand A, Alexandre H (2012) Characterization of the “viable but nonculturable” (VBNC) state in the wine spoilage yeast Brettanomyces. Food Microbiol 30:438–447

    Article  CAS  Google Scholar 

  • Silver M, Lundgren D (1968) The thiosulfate-oxidizing enzyme of Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans). Can J Biochem 46:1215–1220

    Article  CAS  Google Scholar 

  • Steels H, James SA, Roberts IM, Stratford M (2000) Sorbic acid resistance: the inoculum effect. Yeast 16:1173–1183

    Article  CAS  Google Scholar 

  • Stratford M, Rose IM (1986) Transport of sulphur dioxide by Saccharomyces cerevisiae. J Gen Microbiol 132:1–6

    CAS  Google Scholar 

  • Stratford M, Morgan P, Rose AH (1987) Sulphur dioxide resistance in Saccharomyces cerevisiae and Saccharomycodes ludwigii. J Gen Microbiol 133:2173–2179

    CAS  Google Scholar 

  • Suzuki I, Silver M (1966) The initial product and properties of the sulfur-oxidizing enzyme of Thiobacilli. Biochim Biophys Act 122:22–23

    Article  CAS  Google Scholar 

  • Thomas S, Davenport R (1985) Zygosaccharomyces bailii—a profile of characteristics and spoilage activities. Food Microbiol 2:157–169

    Article  Google Scholar 

  • Thomas D, Surdin-Kerjan Y (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61:503–532

    CAS  Google Scholar 

  • Thomas D, Barbey R, Henry D, Surdin-Kerjan Y (1992) Physiological analysis of mutants of Saccharomyces cerevisiae impaired in sulphate assimilation. J Gen Microbiol 138:2021–2028

    CAS  Google Scholar 

  • Thornton RJ (1982) Selective hybridisation of pure culture wine yeasts. II. Improvement of fermentation efficiency and inheritance of SO2 tolerance. Eur J Appl Microbiol Biotechnol 14:159–164

    Article  CAS  Google Scholar 

  • Uzuka Y, Tanaka R, Nomura T, Tanaka K (1985) Method for the determination of sulfite resistance in wine yeasts. J Ferment Technol 63:107–114

    CAS  Google Scholar 

  • Vallier LG, Coons D, Binson LF, Carison M (1994) Altered regulatory responses to glucose are associated with a glucose transport defect in grr1 mutant of Saccharomyces cerevisiae. Genetics 136:1279–1285

    CAS  Google Scholar 

  • Ventre J (1934) Les levures en vinification: étude du ferment et du milieu - conditions d’emploi. Revue de Viticulture, Paris

    Google Scholar 

  • Wang M, McIntee EJ, Cheng G, Shi Y, Villalta PW, Hecht SS (2000) Identification of DNA adducts of acetaldehyde. Chem Res Toxicol 13:1149–1157

    Article  CAS  Google Scholar 

  • Warth AD (1977) Mechanism of resistance of Saccharomyces bailii to benzoic, sorbic and other weak acids used as food preservatives. J Appl Bacteriol 43:215–230

    Article  CAS  Google Scholar 

  • Warth AD (1985) Resistance of yeast species to benzoic and sorbic acids and to sulfur dioxide. J Food Protect 48:564–569

    CAS  Google Scholar 

  • Weeks C (1969) Production of sulfur dioxide-binding compounds and of sulfur dioxide by two Saccharomyces yeasts. Am J Enol Vitic 20:32–39

    Google Scholar 

  • Xu HS, Roberts NC, Singleton FL, Atwell RW, Grimes DJ, Colwell RR (1982) Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb Evol 8:313–323

    Article  Google Scholar 

  • Xu X, Wightman JD, Geller BL, Avram D, Bakalinsky AT (1994) Isolation and characterization of sulfite mutants of Saccharomyces cerevisiae. Curr Genet 25:488–496

    Article  CAS  Google Scholar 

  • Yoshimoto A, Sato R (1968) Studies on yeast sulfite reductase I. Purification and characterization. Biochim Biophys Acta Bioenerg 153:555–575

    Article  CAS  Google Scholar 

  • Yuasa N, Nakagawa Y, Hayakawa M, Iimura Y (2004) Distribution of the sulfite resistance gene SSU1-R and the variation in its promoter region in wine yeasts. J Biosci Bioeng 98:394–397

    CAS  Google Scholar 

  • Yuasa N, Nakagawa Y, Hayakawa M, Iimura Y (2005) Two alleles of the sulfite resistance genes are differentially regulated in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 69:1584–1588

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Divol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Divol, B., du Toit, M. & Duckitt, E. Surviving in the presence of sulphur dioxide: strategies developed by wine yeasts. Appl Microbiol Biotechnol 95, 601–613 (2012). https://doi.org/10.1007/s00253-012-4186-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4186-x

Keywords

Navigation