Applied Microbiology and Biotechnology

, Volume 95, Issue 3, pp 593–600 | Cite as

Structure, biosynthesis, and properties of kurstakins, nonribosomal lipopeptides from Bacillus spp.

  • Max Béchet
  • Thibault Caradec
  • Walaa Hussein
  • Ahmed Abderrahmani
  • Marlène Chollet
  • Valérie Leclère
  • Thomas Dubois
  • Didier Lereclus
  • Maude Pupin
  • Philippe Jacques
Mini-Review

Abstract

A new family of lipopeptides produced by Bacillus thuringiensis, the kurstakins, was discovered in 2000 and considered as a biomarker of this species. Kurstakins are lipoheptapeptides displaying antifungal activities against Stachybotrys charatum. Recently, the biosynthesis mechanism, the regulation of this biosynthesis and the potential new properties of kurstakins were described in the literature. In addition, kurstakins were also detected in other species belonging to Bacillus genus such as Bacillus cereus. This mini-review gathers all the information about these promising bioactive molecules.

Keywords

Kurstakins Lipopeptides Bacillus cereus Bacillus thuringiensis NRPS Spreading 

References

  1. Abderrahmani A (2011) Identification du mécanisme de synthèse non ribosomique d’un nouveau lipopeptide, la kurstakine et étude de son influence sur le phénotype de souches de Bacillus thuringiensis isolées en Algérie. Thèse de Doctorat d’Etat, Université des Sciences et de la Technologie Houari Boumediene, Alger, AlgérieGoogle Scholar
  2. Abderrahmani A, Tapi A, Nateche F, Chollet M, Leclère V, Wathelet B, Hacene H, Jacques P (2011) Bioinformatics and molecular approaches to detect NRPS genes involved in the biosynthesis of kurstakin from Bacillus thuringiensis. Appl Microbiol Biotechnol 92:571–581CrossRefGoogle Scholar
  3. Ansari MZ, Yadav G, Gokhale RS, Mohanty D (2004) NRPS-PKS: a knowledge-based resource for analysis of NRPS/PKS megasynthases. Nucleic Acids Res 32:405–413CrossRefGoogle Scholar
  4. Bachmann BO, Ravel J (2009) Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. Methods Enzymol 458:181–217CrossRefGoogle Scholar
  5. Biria D, Maghsoudi E, Roostaazad R, Dadafarin H, Sahebghadam Lotfi A, Amoozegar MA (2010) Purification and characterization of a novel biosurfactant produced by Bacillus licheniformis MS3. World J Microbiol Biotechnol 26:871–878CrossRefGoogle Scholar
  6. Bumpus SB, Evans BS, Thomas PM, Ntai I, Kelleher NL (2009) A proteomics approach to discovering natural products and their biosynthetic pathways. Nat Biotechnol 27:951–956CrossRefGoogle Scholar
  7. Coutte F, Leclère V, Béchet M, Guez JS, Lecouturier D, Chollet-Imbert M, Dhulster P, Jacques P (2010) Effect of pps disruption and constitutive expression of srfA on surfactin productivity, spreading and antagonistic properties of Bacillus subtilis 168 derivatives. J Appl Microbiol 109:480–491Google Scholar
  8. Dubois T, Faegri K, Perchat S, Lemy C, Buisson C, Nielsen-LeRoux C, Gohar M, Jacques P, Ramarao N, Kolsto AB, Lereclus D (2012) Necrotrophism is a quorum-regulated lifestyle in Bacillus thuringiensis. PloS Pathogens 8:e1002629CrossRefGoogle Scholar
  9. Fickers P, Guez JS, Damblon C, Leclère V, Béchet M, Jacques P, Joris B (2009) High-level biosynthesis of the anteiso-C(17) isoform of the antibiotic mycosubtilin in Bacillus subtilis and characterization of its candidacidal activity. Appl Environ Microbiol 75:4636–4640CrossRefGoogle Scholar
  10. Hathout Y, Ho YP, Ryzhov V, Demirev P, Fenselau C (2000) Kurstakins: a new class of lipopeptides isolated from Bacillus thuringiensis. J Nat Prod 63:1492–1496CrossRefGoogle Scholar
  11. Jacques P (2011) Surfactin and other lipopeptides from Bacillus spp. In: Soberon-Chavez G (ed) Biosurfactants microbiology monographs, vol 20. Springer, Berlin, pp 57–91Google Scholar
  12. Kopp F, Marahiel MA (2007) Macrocyclization strategies in polyketide and nonribosomal peptide biosynthesis. Nat Prod Rep 24:735–749CrossRefGoogle Scholar
  13. Kraas FI, Helmetag V, Wittman M, Strieker M, Marahiel MA (2010) Functional dissection of surfactin synthetase initiation module reveals insights into the mechanism of lipoinitiation. Chem Biol 17:872–880CrossRefGoogle Scholar
  14. Leclère V, Béchet M, Adam A, Guez JS, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584CrossRefGoogle Scholar
  15. Madonna AJ, Voorhees KJ, Taranenko NI, Laiko VV, Doroshenko VM (2003) Detection of cyclic lipopeptide biomarkers from Bacillus species using atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 75:1628–1637CrossRefGoogle Scholar
  16. Mofid MR, Finking R, Essen L, Marahiel MA (2004) Structure-based mutational analysis of the 4′-phosphopantetheinyl transferases Sfp from Bacillus subtilis: carrier protein recognition and reaction mechanism. Biochemistry 14:4128–4136CrossRefGoogle Scholar
  17. Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant diseases biocontrol. Trends Microbiol 16:115–125CrossRefGoogle Scholar
  18. Perchat S, Dubois T, Zouhir S, Gominet M, Poncet S, Lemy C, Aumont-Nicaise M, Deutscher J, Gohar M, Nessler S, Lereclus D (2011) A cell–cell communication system regulates protease production during sporulation in bacteria of the Bacillus cereus group. Mol Microbiol 82:619–633CrossRefGoogle Scholar
  19. Price NP, Rooney AP, Swezey JL, Perry E, Cohan FM (2007) Mass spectrometric analyses of lipopeptides from Bacillus strains isolated from diverse geographical locations. FEMS Microbiol Lett 271:83–89CrossRefGoogle Scholar
  20. Raaijamakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062Google Scholar
  21. Rausch C, Weber T, Kohlbacher O, Wohlleben W, Huson DH (2005) Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using Transductive Support Vector Machines (TSVM). Nucl Acids Res 33:5799–5808CrossRefGoogle Scholar
  22. Rausch C, Hoof I, Weber T, Wohlleben W, Huson DH (2007) Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution. BMC Evol Biol 7:78CrossRefGoogle Scholar
  23. Roongsawang N, Washio K, Morikawa M (2010) Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. Int J Mol Sci 12:141–172CrossRefGoogle Scholar
  24. Röttig M, Medema MH, Blin K, Weber T, Rausch C, Kohlbacher O (2011) NRPSpredictor2—a web server for predicting NRPS adenylation domain specificity. Nucl Acids Res 39(Web Server issue):W362–W367CrossRefGoogle Scholar
  25. Schwarzer D, Mootz HD, Linne U, Marahiel MA (2002) Regeneration of misprimed nonribosomal peptide synthetases by type II thioesterases. Proc Natl Acad Sci USA 99:14083–14088CrossRefGoogle Scholar
  26. Sieber SA, Marahiel MA (2005) Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem Rev 105:715–738CrossRefGoogle Scholar
  27. Tapi A (2010) Stratégie moléculaire de mise en évidence de peptides actifs d’origine non ribosomiale chez Bacillus sp. et Lactobacillus sp. PhD thesis, Université Lille1 Sciences et Technologies, FranceGoogle Scholar
  28. Tapi A, Chollet-Imbert M, Scherens B, Jacques P (2010) New approach for the detection of non ribosomal peptide synthetase genes in Bacillus strains by polymerase chain reaction. Appl Microbiol Biotechnol 85:1521–1531CrossRefGoogle Scholar
  29. Zeigler DR, Pragai Z, Rodriguez S, Chevreux B, Muffler A, Albert T, Bai R, Wyss M, Perkins JB (2008) The origins of 168, W23, and other Bacillus subtilis legacy strains. J Bacteriol 190:6983–6995CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Max Béchet
    • 1
  • Thibault Caradec
    • 1
  • Walaa Hussein
    • 1
  • Ahmed Abderrahmani
    • 2
  • Marlène Chollet
    • 1
  • Valérie Leclère
    • 1
  • Thomas Dubois
    • 3
  • Didier Lereclus
    • 3
  • Maude Pupin
    • 4
  • Philippe Jacques
    • 1
    • 5
  1. 1.Laboratoire des Procédés Biologiques, Génie Enzymatique et Microbien (ProBioGEM), UPRES-EA 1026, Polytech’Lille/IUT AUniversité Lille Nord de France-Sciences et Technologies, USTLVilleneuve d’Ascq CedexFrance
  2. 2.Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences BiologiquesUniversité des Sciences et de la Technologie Houari BoumedieneAlgerAlgérie
  3. 3.INRAGuyancourtFrance
  4. 4.LIFLVilleneuve d’Ascq CedexFrance
  5. 5.Laboratoire des Procédés Biologiques, Génie Enzymatique et Microbie (ProBioGEM), UPRES-EA 1026, Polytech’Lille/IUT AUniversité Lille Nord de France—Sciences et Technologies, USTLVilleneuve d’Ascq CedexFrance

Personalised recommendations