Skip to main content
Log in

Combination of site-directed mutagenesis and calcium ion addition for enhanced production of thermostable MBP-fused heparinase I in recombinant Escherichia coli

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Heparinase I (HepI), which specifically cleaves heparin and heparan sulfate, is one of the most extensively studied glycosaminoglycan lyases. Low productivity of HepI has largely hindered its industrial and pharmaceutical applications. Loss of bacterial HepI enzyme activity through poor thermostability during its expression and purification process in production can be an important issue. In this study, using a thermostabilization strategy combining site-directed mutagenesis and calcium ion addition during its production markedly improved the yield of maltose-binding protein-fused HepI (MBP–HepI) from recombinant Escherichia coli. Substitution of Cys297 to serine in MBP–HepI offered a 30.6 % increase in the recovered total enzyme activity due to a mutation-induced thermostabilizing effect. Furthermore, upon addition of Ca2+ as a stabilizer at optimized concentrations throughout its expression, extraction, and purification process, purified mutant MBP–HepI showed a specific activity of 56.3 IU/mg, 206 % higher than that of the wild type obtained without Ca2+ addition, along with a 177 % increase in the recovered total enzyme activity. The enzyme obtained through this novel approach also exhibited significantly enhanced thermostability, as indicated by both experimental data and the kinetic modeling. High-yield production of thermostable MBP–HepI using the present system will facilitate its applications in laboratory-scale heparin analysis as well as industrial-scale production of low molecular weight heparin as an improved anticoagulant substitute.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ameer GA, Harmon W, Sasisekharan R, Langer R (1999) Investigation of a whole blood fluidized bed Taylor–Couette flow device for enzymatic heparin neutralization. Biotechnol Bioeng 62:602–608

    Article  CAS  Google Scholar 

  • Bernstein H, Yang VC, Cooney CL, Langer R (1988) Immobilized heparin lyase system for blood deheparinization. Methods Enzymol 137:515–529

    Article  CAS  Google Scholar 

  • Campbell AK (1983) Intracellular calcium: its universal role as regulator. Wiley, Chichester

    Google Scholar 

  • Cattoli F, Boi C, Sorci M, Sarti GC (2006) Adsorption of pure recombinant MBP-fusion proteins on amylose affinity membranes. J Membr Sci 273:2–11

    Article  CAS  Google Scholar 

  • Chen Y, Xing XH, Lou K (2005) Construction of recombinant Escherichia coli for over-production of soluble heparinase I by fusion to maltose-binding protein. Biochem Eng J 23:155–159

    Article  CAS  Google Scholar 

  • Chen Y, Xing XH, Ye FC, Kuang Y, Luo MF (2007) Production of MBP–HepA fusion protein in recombinant Escherichia coli by optimization of culture medium. Biochem Eng J 34:114–121

    Article  CAS  Google Scholar 

  • Chen S, Ye FC, Chen Y, Chen Y, Zhao HX, Yatsunami R, Nakamura S, Arisaka F, Xing XH (2011) Biochemical analysis and kinetic modeling of the thermal inactivation of MBP-fused heparinase I: implications for a comprehensive thermostabiliztion strategy. Biotechnol Bioeng 108:1841–1851

    Article  CAS  Google Scholar 

  • Dominguez C (2004) Calcium signalling in bacteria. Mol Microbiol 54:291–297

    Article  CAS  Google Scholar 

  • Ernst S, Langer R, Cooney CL, Sasisekharan R (1995) Enzymatic degradation of glycosaminoglycans. Crit Rev Biochem Mol Biol 30:387–444

    Article  CAS  Google Scholar 

  • Ernst S, Venkataraman G, Winkler S, Godavarti R, Langer R, Cooney CL, Sasisekharan R (1996) Expression in Escherichia coli, purification and characterization of heparinase I from Flavobacterium heparinum. Biochem J 315:589–597

    CAS  Google Scholar 

  • Ernst S, Garro OA, Winkler S, Venkataraman G, Langer R, Cooney CL, Sasisekharan R (1997) Process simulation for recombinant protein production: cost estimation and sensitivity analysis for heparinase I expressed in Escherichia coli. Biotechnol Bioeng 53:575–582

    Article  CAS  Google Scholar 

  • Francis DM, Page R (2010) Strategies to optimize protein expression in E. coli. Curr Protoc Protein Sci 61:5.24.1–5.24.29

    Google Scholar 

  • Guerrini M, Beccati D, Shriver Z, Naggi A, Viswanathan K, BisioA CI, Lansing JC, Guglieri S, Fraser B, Al-Hakim A, Gunay NS, Zhang ZQ, Robinson L, Buhse L, Nasr M, Woodcock J, Langer R, Venkataraman G, Linhardt RJ, Casu B, Torri G, Sasisekharan R (2008) Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events. Nat Biotechnol 26:669–775

    Article  CAS  Google Scholar 

  • Hirsh J, Warkentin TE, Shaughnessy SG, Anand SS, Halperin JL, Raschke R, Granger C, Ohman EM, Dalen JE (2001) Heparin and low-molecular-weight heparin mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy, and safety. Chest 119:64S–94S

    Article  CAS  Google Scholar 

  • Jones HE, Holland IB, Baker HL, Campbell AK (1999) Slow changes in cytosolic free Ca2+ in Escherichia coli highlight two putative influx mechanisms in response to changes in extracellular calcium. Cell Calcium 25:265–274

    Article  CAS  Google Scholar 

  • Korir AK, Larive CK (2009) Advances in the separation, sensitive detection, and characterization of heparin and heparan sulfate. Anal Bioanal Chem 393:155–169

    Article  CAS  Google Scholar 

  • Kuang Y, Xing XH, Chen Y, Ye FC, Chen Y, Yan YY, Liu Z, Bi RC (2006) Production of heparin oligosaccharides by fusion protein of MBP–heparinase I and the enzyme thermostability. J Mol Catal B: Enzym 43:90–95

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lebendiker M, Danieli T (2011) Purification of proteins fused to maltose-binding protein. In: Walls D, Loughran ST (eds) Protein chromatography: methods and protocols. Methods in molecular biology, vol 681. Springer, New York, pp 281–293

    Chapter  Google Scholar 

  • Linhardt RJ, Cooney CL, Tapper D, Zannetos CA, Larsen AK, Langer R (1984) An immobilized microbial heparinase for blood deheparinization. Appl Biochem Biotech 9:41–45

    Article  CAS  Google Scholar 

  • Lohse DL, Linhardt RJ (1992) Purification and characterization of heparin lyases from Flavobacterium heparinum. J Biol Chem 267:24347–24355

    CAS  Google Scholar 

  • Ma XL, Wang ZS, Li SX, Shen Q, Yuan QS (2006) Effect of CaCl2 as activity stabilizer on purification of heparinase I from Flavobacterium heparinum. J Chromatogr B 843:209–215

    Article  CAS  Google Scholar 

  • Michiels J, Xi C, Verhaert J, Vanderleyden J (2002) The functions of Ca2+ in bacteria: a role for EF-hand proteins? Trends Microbiol 10:87–93

    Article  CAS  Google Scholar 

  • Naseem R, Davies SR, Jones H, Wann KT, Holland IB, Campbell AK (2007) Cytosolic Ca2+ regulates protein expression in E. coli through release from inclusion bodies. Biochem Biophys Res Commun 360:33–39

    Article  CAS  Google Scholar 

  • Norris V, Grant S, Freestone P, Canvin J, Sheikh FN, Toth I, Trinei M, Modha K, Norman RI (1996) Calcium signalling in bacteria. J Bacteriol 178:3677–3682

    CAS  Google Scholar 

  • Özbek B, Ülgen KÖ (2000) The stability of enzymes after sonication. Process Biochem 35:1037–1043

    Article  Google Scholar 

  • Pervin A, Gallo C, Jandik KA, Han XJ, Linhardt RJ (1995) Preparation and structural characterization of large heparin-derived oligosaccharides. Glycobiology 5:83–95

    Article  CAS  Google Scholar 

  • Riggs P (1994) Expression and purification of maltose-binding protein fusions. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K, Albright LM, Borowsky ML, Coen DM, Shaw R, Smith CL, Varki A, Wildermuth MC (eds) Current protocols in molecular biology. Wiley, New York, pp 16.16.11–16.16.14

    Google Scholar 

  • Rokhina EV, Lens P, Virkutyte J (2009) Low-frequency ultrasound in biotechnology: state of the art. Trends Biotechnol 27:298–306

    Article  CAS  Google Scholar 

  • Sasisekharan R, Bulmer M, Moremen KW, Cooney CL, Langer R (1993) Cloning and expression of heparinase I gene from Flavobacterium heparinum. Proc Natl Acad Sci USA 90:3660–3664

    Article  CAS  Google Scholar 

  • Shpigel E, Goldlust A, Efroni G, Avraham A, Eshel A, Dekel M, Shoseyov O (1999) Immobilization of recombinant heparinase I fused to cellulose-binding domain. Biotechnol Bioeng 65:17–23

    Article  CAS  Google Scholar 

  • Shriver Z, Liu D, Hu Y, Sasisekharan R (1999) Biochemical investigations and mapping the calcium-binding sites of heparinase I from Flavobacterium heparinum. J Biol Chem 274:4082–4088

    Article  CAS  Google Scholar 

  • Yang VC, Linhardt RJ, Bernstein H, Cooney CL, Langer R (1985) Purification and characterization of heparinase from Flavobacterium heparinum. J Biol Chem 260:1849–1857

    CAS  Google Scholar 

  • Ye FC, Kuang Y, Chen S, Zhang C, Chen Y, Xing XH (2009) Characteristics of low molecular weight heparin production by an ultrafiltration membrane bioreactor using maltose binding protein fused heparinase I. Biochem Eng J 46:193–198

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 20836004 and 20676071). Shuo Chen was supported by the Tokyo Tech–Tsinghua University Joint Graduate Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Hui Xing.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Standard curve of OD600 vs. CFU/ml of E. coli TB1 [pMHS] strain cultivated in the M9-based medium (PDF 25.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S., Huang, Z., Wu, J. et al. Combination of site-directed mutagenesis and calcium ion addition for enhanced production of thermostable MBP-fused heparinase I in recombinant Escherichia coli . Appl Microbiol Biotechnol 97, 2907–2916 (2013). https://doi.org/10.1007/s00253-012-4145-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4145-6

Keywords

Navigation