Applied Microbiology and Biotechnology

, Volume 96, Issue 6, pp 1561–1576 | Cite as

Characterization of Bifidobacterium spp. strains for the treatment of enteric disorders in newborns

  • Irene Aloisio
  • Cecilia Santini
  • Bruno Biavati
  • Giovanni Dinelli
  • Avrelija Cencič
  • Walter Chingwaru
  • Luca Mogna
  • Diana Di GioiaEmail author
Applied microbial and cell physiology


Several studies support the use of probiotics for the treatment of minor gastrointestinal problems in infants. Positive effects on newborn colics have been evidenced after administration of Lactobacillus strains, whereas no studies have been reported regarding the use of bifidobacteria for this purpose. This work was therefore aimed at the characterization of Bifidobacterium strains capable of inhibiting the growth of pathogens typical of the infant gastrointestinal tract and of coliforms isolated from colic newborns. Among the 46 Bifidobacterium strains considered, 16 showed high antimicrobial activity against potential pathogens; these strains were further characterized from a taxonomic point of view, for the presence and transferability of antibiotic resistances, for citotoxic effects and adhesion to nontumorigenic gut epithelium cell lines. Moreover, their ability to stimulate gut health by increasing the metabolic activity and the immune response of epithelial cells was also studied. The examination of all these features allowed to identify three Bifidobacterium breve strains and a Bifidobacterium longum subsp. longum strain as potential probiotics for the treatments of enteric disorders in newborns such as infantile colics. A validation clinical trial involving the selected strains is being planned.


Bifidobacterium Probiotics Newborns Enteric disorders Nontumorigenic cell lines 



The study was funded by the University of Bologna, Program RFO number J61J10000790001, assigned to Prof. Bruno Biavati. The authors are grateful to Dr. Giovanni Mogna and Dr. Paolo Strozzi of Probiotical SpA for fruitful discussions.

Supplementary material

253_2012_4138_MOESM1_ESM.pdf (16 kb)
ESM 1 PDF 15 kb


  1. Aires J, Doucet-Populaire F, Butel MJ (2007) Tetracycline resistance mediated by tet(W), tet(M), and tet(O) genes of Bifidobacterium isolates from humans. Appl Environ Microbiol 73:2751–2754CrossRefGoogle Scholar
  2. Ammor MS, Flórez AB, Van Hoek AHAM, De Los Reyes-Gavilán CG, Aarts HJM, Margolles A, Mayo B (2008) Molecular characterization of intrinsic and acquired antibiotic resistance in lactic acid bacteria and bifidobacteria. J Mol Microbiol Biotechnol 14:6–15CrossRefGoogle Scholar
  3. Arboleya S, Ruas-Madiedo P, Margolles A, Solis G, Salminen S, De los Reyes-Gavilan CG, Gueimonde M (2011) Characterization and in vitro properties of potentially probiotic Bifidobacterium strains isolated from breast-milk. Int J Food Microbiol 149:28–36CrossRefGoogle Scholar
  4. Benzecri JP (1992) Correspondence analyses handbook. CRC Press, Boca RatonGoogle Scholar
  5. Biavati B, Mattarelli P (2006) The Family Bifidobacteriaceae prokaryotes: a handbook on the biology of bacteria, 3rd ed, vol 3. Springer, New York, pp 322–382Google Scholar
  6. Burrus V, Waldor MK (2003) Control of SXT integration and excision. J Bacteriol 185:5045–5054CrossRefGoogle Scholar
  7. Cencic A, Langerholc T (2010) Functional cell models of the gut and their applications in food microbiology—a review. Int J Food Microbiol 141:S4–S14CrossRefGoogle Scholar
  8. D’Aimmo MR, Modesto M, Biavati B (2007) Antibiotic resistance of lactic acid bacteria and Bifidobacterium spp. isolated from dairy and pharmaceutical products. Int J Food Microbiol 115:35–42CrossRefGoogle Scholar
  9. EFSA (2005) Opinion of the scientific committee on a request from EFSA related to a generic approach to the safety assessment by EFSA of microorganisms used in food/feed and the production of food/feed additives. EFSA J 226:1–12Google Scholar
  10. EFSA (2008) Opinion of the Scientific Panel on Additives and Products or Substances used in Animal Feed on the updating of the criteria used in the assessment of bacteria for resistance to antibiotics of human or veterinary importance. EFSA Journal 223:1–12Google Scholar
  11. Guarner F (2006) Enteric flora in health and disease. Digestion 73:5–12CrossRefGoogle Scholar
  12. Hammerman C, Bin-Nun A, Kaplan M (2006) Safety of probiotics: comparision of two popular strains. BMJ 333:1006–1008CrossRefGoogle Scholar
  13. Indrio F, Riezzo G, Raimondi F, Bisceglia M, Cavallo L, Francavilla R (2008) The effects of probiotics on feeling tolarance, bowel habitus and gastrointestinal motility in preterm newborns. J Pediatr 152:801–806CrossRefGoogle Scholar
  14. Ivec M, Botic T, Koren S, Jakobsen M, Weingartl H, Cencic A (2007) Interaction of macrophages with probiotic bacteria lead to increase antiviral response against vesicular stomatitis virus. Antiviral Res 75:266–274CrossRefGoogle Scholar
  15. Kiwaki M, Sato T (2009) Antimicrobial susceptibility of Bifidobacterium breve strains and genetic analysis of streptomycin resistance of probiotic B. breve strain Yakult. Int J Food Microbiol 134:211–215CrossRefGoogle Scholar
  16. Lampkowska J, Feld L, Monaghan A, Toomey N, Schjørring S, Jacobsen B (2008) A standardized conjugation protocol to asses antibiotic resistance transfer between lactococcal species. Int J Food Microbiol 127:172–175CrossRefGoogle Scholar
  17. Li Y, Shimizu T, Hosaka A, Kaneko N, Ohtsuka Y, Yamashiro Y (2004) Effects of Bifidobacterium breve supplementation on intestinal flora of low birth weight infants. Pediatr Int 46:509–515CrossRefGoogle Scholar
  18. Lin J (2004) Too much short chain fatty acids cause neonatal necrotizing enterocolitis. Med Hypotheses 62:291–293CrossRefGoogle Scholar
  19. Maragkoudakis PA, Chingwaru W, Gradisnik L, Tsakalidou E, Cencic A (2010) Lactic acid bacteria efficiently protect human and animal epithelial and immune cells from enteric virus infection. Int J Food Microbiol 141:S91–S97CrossRefGoogle Scholar
  20. Masco L, Van Hoorde K, De Brandt E, Swings J, Huys G (2006) Antimicrobial susceptibility of Bifidobacterium strains from humans, animals and probiotic products. J Antimicrob Chemother 58:85–94CrossRefGoogle Scholar
  21. Matsuki T, Watanabe K, Tanaka R, Fukuda M, Oyaizu H (1999) Distribution of bifidobacterial species in human intestinal microflora examined with 16S rRNA-gene-targeted species-specific primers. Appl Environ Microbiol 65:4506–4512Google Scholar
  22. Matto J, Vanhoek A, Domig K, Saarela M, Florez A, Brockmann E (2007) Susceptibility of human and probiotic Bifidobacterium spp. to selected antibiotics as determined by the Etest method. Int Diary J 17:1123–1131CrossRefGoogle Scholar
  23. Mohan R, Koebnick C, Schildt J, Schmidt S, Mueller M, Possner M (2006) Effects of Bifidobacterium lactis Bb12 supplementation on intestinal microbiota of preterm infants: a double-blind, placebo-controlled, randomized study. J Clin Microbiol 44:4025–4031CrossRefGoogle Scholar
  24. Nissen L, Chingwaru W, Sgorbati B, Biavati B, Cencic A (2009) Gut health promoting activity of new putative probiotic/protective Lactobacillus spp. strains: a functional study in the small intestinal cell model. Int J Food Microbiol 135:288–294CrossRefGoogle Scholar
  25. Ouoba L, Lei V, Jensen LB (2008) Resistance of potential probiotic lactic acid bacteria and bifidobacteria of African and European origin to antimicrobials: determination and transferability of the resistance genes to other bacteria. Int J Food Microbiol 121:217–224CrossRefGoogle Scholar
  26. Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO (2007) Development of the human infant intestinal microbiota. PLoS Biol 5:1556–1573CrossRefGoogle Scholar
  27. Park SY, Ji GE, Ko YT, Jung HK, Ustunol Z, Pestka JJ (1999) Potential of hydrogen peroxide, nitric oxide and cytokine production in RAW 264.7 macrophage cells exposed to human and commercial isolates of Bifidobacterium. Int J Food Microbiol 46:231–241CrossRefGoogle Scholar
  28. Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, Van Den Brandt PA (2006) Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118:511–521CrossRefGoogle Scholar
  29. Pipenbaher N, Moeller PL, Dolinšek J, Jakobsen M, Weingartl H, Cencic A (2009) Nitric oxide (NO) production in mammalian nontumorigenic epithelia cells of the small intestine and macrophages induced by individual strains of lactobacilli and bifidobacteria. Int Dairy J 19:166–171CrossRefGoogle Scholar
  30. Roessler A, Friedrich U, Vogelsang H, Bauer A, Kaatz M, Hipler UC, Schmidt I, Jahreis G (2008) The immune system in healthy adults and patients with atopic dermatitis seems to be affected differently by a probiotic intervention. Clin Exp Allergy 38:93–102Google Scholar
  31. Roncaglia L, Amaretti A, Raimondi S, Leonardi A, Rossi M (2011) Role of bifidobacteria in the activation of the lignan secoisolariciresinol diglucoside. Appl Microbiol Biotechnol 92:159–168CrossRefGoogle Scholar
  32. Rowland IR (2008) Prebiotics in human medicine. In: Versalovic J, Wilson M (eds) Therapeutic microbiology: probiotics and related strategies. American Society for Microbiology, Washington DC, pp 299–306Google Scholar
  33. Sanders ME, Akkermans LM, Haller D, Hammerman C, Heimbach J, Hörmannsperger G, Huys G, Levy DD, Lutgendorff F, Mack D, Phothirath P, Solano-Aguilar G, Vaughan E (2010) Safety assessment of probiotics for human use. Gut Microbes 1:164–185CrossRefGoogle Scholar
  34. Santini C, Baffoni L, Gaggia F, Granata M, Gasbarri R, Di Gioia D (2010) Characterization of probiotic strains: an application as feed additives in poultry against Campylobacter jejuni. Int J Food Microbiol 141:S98–S108CrossRefGoogle Scholar
  35. SAS STAT (1988) User’s guide. Release 6.03 edition. SAS Institute, CaryGoogle Scholar
  36. Satokari RM, Vaughan EE, Akkermans ADL, Saarela M (2001) Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis. Appl Environ Microbiol 67:504–513CrossRefGoogle Scholar
  37. Savino F, Cordisco L, Tarasco V, Calabrese R, Palumeri E, Matteuzzi D (2009) Molecular identification of coliform bacteria from colicky breastfed infants. Acta Paediatr 98:1582–1588CrossRefGoogle Scholar
  38. Savino F, Cordisco L, Tarasco V, Palumeri E, Calabrese R, Oggero R, Roos S, Matteuzzi D (2010) Lactobacillus reuteri DSM 17939 in infantile colic: a randomized, double-blind, placebo-controlled trial. Pediatrics 126:526–533CrossRefGoogle Scholar
  39. Savino F, Cordisco L, Tarasco V, Locatelli E, Di Gioia D, Oggero R (2011) Antagonistic effect of Lactobacillus strains against gas-producing coliforms isolated from colicky infants. BMC Microbiol 11:157CrossRefGoogle Scholar
  40. Scardovi V, Casalicchio F, Vincenzi N (1979) Multiple electrophoretic forms of transaldolase and 6-phosphogluconic dehydrogenase and their relationships to the taxonomy and ecology of the bifidobacteria. Int J Syst Bacteriol 29:312–327CrossRefGoogle Scholar
  41. Serikov I, Russel SL, Antunes LCM, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90:859–904CrossRefGoogle Scholar
  42. Taylor AL, Hale J, Wiltschut J, Lehmann H, Dunstan JA, Prescott SL (2006) Effects of probiotic supplementation for the first 6 months of life on allergen- and vaccine-specific immune responses. Clin Exp Allergy 36:1227–1235CrossRefGoogle Scholar
  43. Tremblay LN, Slutsky AS (2007) Ventilator- induced lung inujury: from the bench to the bedside. Intensive Care Med 32:24–33CrossRefGoogle Scholar
  44. Van Hoek AH, Mayrhofer S, Domig K, Florez A, Ammor M, Mayo B, Aarts HM (2008) Mosaic tetracycline resistance genes and their flanking regions in Bifidobacterium thermophilum and Lactobacillus johsonii. Antimicrob Agents Chemother 52:248–252CrossRefGoogle Scholar
  45. Van Niel CW, Feudtner C, Garrison MM, Christakis DA (2002) Lactobacillus therapy for acute infectious diarrhea in children: a meta-analysis. Pediatrics 109:678–684CrossRefGoogle Scholar
  46. Ventura M, Meylan V, Zink R (2003) Identification and tracing of Bifidobacterium species by use of enterobacterial repetitive intergenic consensus sequences. Appl Environ Microbiol 69:4296–4301CrossRefGoogle Scholar
  47. Ventura M, Van Sinderen D, Fitzgerald GF, Zink R (2004) Insights into the taxonomy, genetics and physiology of bifidobacteria. Antonie Van Leeuwenhoek 86:205–223CrossRefGoogle Scholar
  48. Ventura M, Turroni F, Ribbera A, Foroni E, Van Sideren D (2008) Bifidobacteria: the model human gut commensal. In: Versalovic J, Wilson M (eds) Therapeutic microbiology: probiotics and related strategies. American Society for Microbiology, Washington, DC, pp 35–50Google Scholar
  49. Wada M, Nagata S, Saito M, Shimizu T, Yamashiro Y, Matsuki T (2010) Effects of the enteral administration of Bifidobacterium breve on patients undergoing chemotherapy for pediatric malignancies. Support Care Cancer 18:751–757CrossRefGoogle Scholar
  50. Wang C, Shoji H, Sato H, Nagata S, Ohtsuka Y, Shimizu T (2007) Effects of oral administration of Bifidobacterium breve on fecal lactic acid and short-chain fatty acids in low birth weight infants. J Pediatr Gastroenterol Nutr 44:252–257CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Irene Aloisio
    • 1
  • Cecilia Santini
    • 1
  • Bruno Biavati
    • 1
  • Giovanni Dinelli
    • 1
  • Avrelija Cencič
    • 2
    • 3
  • Walter Chingwaru
    • 2
  • Luca Mogna
    • 4
  • Diana Di Gioia
    • 1
    Email author
  1. 1.Department of Agroenvironmental Sciences and TechnologiesUniversity of BolognaBolognaItaly
  2. 2.Department of Microbiology, Biochemistry, and Biotechnology, Faculty of Agriculture and Life SciencesUniversity of MariborHočeSlovenia
  3. 3.Department of Biochemistry and Nutrition, Faculty of MedicineUniversity of MariborMariborSlovenia
  4. 4.Probiotical SpANovaraItaly

Personalised recommendations