Abstract
Pseudomonas aeruginosa is an important cause of infections, especially in patients with immunodeficiency or diabetes. Antibiotics are effective in preventing morbidity and mortality from Pseudomonas infection, but because of spreading multidrug-resistant bacterial strains, bacteriophages are being explored as an alternative therapy. Two newly purified broad host range Pseudomonas phages, named vB_Pae-Kakheti25 and vB_Pae-TbilisiM32, were characterized as candidates for use in phage therapy. Morphology, host range, growth properties, thermal stability, serology, genomic sequence, and virion composition are reported. When phages are used as bactericides, they are used in mixtures to overcome the development of resistance in the targeted bacterial population. These two phages are representative of diverse siphoviral and podoviral phage families, respectively, and hence have unrelated mechanisms of infection and no cross-antigenicity. Composing bactericidal phage mixtures with members of different phage families may decrease the incidence of developing resistance through a common mechanism.





Similar content being viewed by others
References
Bendiak GN, Ratjen F (2009) The approach to Pseudomonas aeruginosa in cystic fibrosis. Semin Respir Crit Care Med 30:587–595. doi:10.1055/s-0029-1238917
Botstein D (1980) A theory of modular evolution for bacteriophages. Ann N Y Acad Sci 354:484–490. doi:10.1111/j.1749-6632.1980.tb27897.x
Breidenstein EBM, de la Fuente-Núñez C, Hancock REW (2011) Pseudomomas aeruginosa: all roads lead to resistance. Trends Microbiol 19:419–426. doi:10.1016/j.tim.2011.04.005
Ceyssens PJ, Mesyanzhinov V, Sykilinda N, Briers Y, Roucourt B, Lavigne R, Robben J, Domashin A, Miroshnikov K, Volckaert G, Hertveldt K (2008) The genome and structural proteome of YuA, a new Pseudomonas aeruginosa phage resembling M6. J Bacteriol 190:1429–1435. doi:10.1128/JB.01441-07
Ceyssens PJ, Glonti T, Kropinski AM, Lavigne R, Chanishvili N, Kulakov L, Lashkhi N, Tediashvilli M, Merabishvili M (2011) Phenotypic and genotypic variations within a single bacteriophage species. Virol J 8:134. doi:10.1186/1743-422X-8-134
Chang J, Weigele P, King J, Chiu W, Jiang W (2006) Cryo-EM asymmetric reconstruction of bacteriophage P22 reveals organization of its DNA packaging and infecting machinery. Structure 14:1073–1082. doi:10.1016/j.str.2006.05.007
Chang C-Y, Kemp P, Molineux IJ (2010a) Gp15 and gp16 cooperate in translocating bacteriophage T7 DNA into the infected cell. Virology 398:176–186. doi:10.1016/j.virol.2009.12.002
Chang JT, Schmid MF, Haase-Pettingell C, Weigele PR, King JA, Chiu W (2010b) Visualizing the structural changes of bacteriophage epsilon15 and its Salmonella host during infection. J Mol Biol 402:731–740. doi:10.1016/j.jmb.2010.07.058
Chirakadze I, Perets A, Ahmed R (2009) Phage typing. Methods Mol Biol 502:293–305. doi:10.1007/978-1-60327-565-1_17
Debarbieux L, Leduc D, Maura D, Morello E, Criscuolo A, Grossi O, Balloy V, Tougui L (2010) Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. J Infect Dis 201:1096–1104. doi:10.1086/651135
Gatedee J, Kritsiriwuthinan K, Galyov EE, Shan J, Dubinina E, Intarak N, Clokie MR, Korbsrisata S (2011) Isolation and characterization of a novel podovirus which infects Burkholderia pseudomallei. Virol J 8:366. doi:10.1186/1743-422X-8-366
Harper DR, Enright MC (2011) Bacteriophages for the treatment of Pseudomonas aeruginosa infections. J Appl Microbiol 111:1–7. doi:10.111/j.1365-2672.2011.05003.x
Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332. doi:10.1016/j.ijantimicag.2009.12.011
Hyman P, Abedon ST (2009) Practical methods for determining phage growth parameters. Methods Mol Biol 501:175–202. doi:10.1007/978-1-60327-164-6_18
Jiang W, Chang J, Jakana J, Weigele P, King J, Chiu W (2006) Structure of epsilon 15 bacteriophage reveals genome organization and DNA packaging/injection apparatus. Nature 439:612–616. doi:10.1038/nature04487
Khawaldeh A, Morales S, Dillon B, Alavidze Z, Ginn AN, Thomas L, Chapman SJ, Dublanchet A, Smithyman A, Iredell JR (2011) Bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection. J Med Microbiol 60:1697–1700. doi:10.1099/jmm.0.029744-0
Knezevic P, Kostanjsek R, Obreht D, Petrovic O (2009) Isolation of Pseudomonas aeruginosa specific phages with broad activity spectra. Curr Microbiol 59:173–180. doi:10.1077/s00284-009-9417-8
Kropinski AM, Mazzocco A, Waddell TE, Lingohr E, Johnson RP (2009) Enumeration of bacteriophages by double agar overlay plaque assay. Methods Mol Biol 501:69–76. doi:10.1007/978-1-60327-164-6_7
Kutter E, De Vos D, Gvasalia G, Alavidze Z, Gogokhia L, Kuhl S, Abedon ST (2010) Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11:69–86. doi:10.2174/138920110790725401
Kwan T, Liu J, Dubow M, Gros P, Pelletier J (2006) Comparative genomic analysis of 18 Pseudomonas aeruginosa bacteriophages. J Bacteriol 188:1184–1187. doi:10.1128/JB.188.3.1184-1187.2006
Lavigne R, Seto D, Mahadevan P, Ackermann HW, Kropinski AM (2008) Unifying classical and molecular taxonomic classification: analysis of the Podoviridae using BLASTP-based tools. Res Microbiol 159:406–414. doi:10.1016/j.resmic.2008.03.005
Lin NT, Chiou PY, Chang KC, Chen LK, Lai MJ (2010) Isolation and characterization of phiAB2: a novel bacteriophage of Acinetobacter baumannii. Res Microbiol 161:308–314. doi:10.1016/j.resmic.2010.03.007
Matsushita I, Yanase H (2008) A novel thermophilic lysozyme from bacteriophage phiIN93. Biochem Biophys Res Commun 377:89–92. doi:10.1016/j.bbrc.2008.09.101
Pajunen M, Kiljunen S, Skurnik M (2000) Bacteriophage ϕYeO3-12, specific for Yersinia enterocolitica serotype O:3, is related to coliphages T3 and T7. J Bacteriol 182:5114–5120. doi:10.1128/JB.182.18.5114-5120.2000
Pollack M (1984) The virulence of Pseudomonas aeruginosa. Rev Infect Dis 6:S617–S626. doi:10.1093/clinids/6.Supplement_3.S617
Sulakvelidze A, Kutter E (2005) Bacteriophage therapy in humans. In: Kutter E, Sulakvelidze A (eds) Bacteriophages. Biology and applications. CRC Press, New York, pp 377–428. doi:10.1201/9780203491751.ch14
Sulakvelidze A, Alavidze Z, Morris JG Jr (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45:649–659. doi:10.1128/ACC.45.3.649-659.2001
Summers WC (1999) Felix d’Herelle and the origins of molecular biology. Yale University Press, New Haven, Connecticut, pp 108–124
Thomas JA, Rolando MR, Carroll CA, Shen PS, Belnap DM, Weintraub ST, Serwer P, Hardies SC (2008) Characterization of Pseudomonas chlororaphis myovirus 201ϕ2-1 via genomic sequencing, mass spectrometry, and electron microscopy. Virology 376:330–338. doi:10.1016/j.virol.2008.04.004
Traugott KA, Echivarria K, Maxwell P, Green K, Lewis JS II (2011) Monotherapy or combination therapy? The Pseudomonas aeruginosa conundrum. Pharmacotherapy 31:598–608. doi:10.1592/phco.31.6.598
Waddell TE, Franklin K, Mazzocco A, Johnson RP (2009) Preparation and characterization of anti-phage serum. Methods Mol Biol 501:287–292. doi:10.1007/978-1-60327-164-6_24
Wang J, Michel V, Hofnung M, Charbit A (1998) Cloning of the J gene of bacteriophage Lambda, expression and solubilization of the J protein: first in vitro studies on the interactions between J and LamB, its cell surface receptor. Res Microbiol 149:611–624. doi:10.1016/S0923-2508(99)80009-6
Wang PW, Chu L, Guttman DS (2004) Complete sequence and evolutionary genomic analysis of the Pseudomonas aeruginosa transposable bacteriophage D3112. J Bacteriol 186:400–410. doi:10.1128/JB.186.2.400-410.2004
Young LS (1984) The clinical challenge of infections due to Pseudomonas aeruginosa. Rev Infect Dis 6(suppl 3):S603–S607. doi:10.1093/clinids/6.Supplement_3.S603
Acknowledgments
This project was supported by GRDF/GNSF08/532 no. 0408 grant to N.K., ISTC G-1369 to Z.A., and a UTHSCSA pilot project grant to S.C.H. Mass spectrometry analyses were conducted in the UTHSCSA Institutional Mass Spectrometry Laboratory, and bioinformatic analysis was conducted with assistance from the UTHSCSA Bioinformatics Center. The phages described in this paper later may be used in phage preparations produced by Eliava Institute and Ltd “Eliava Biopreparations” for treatment of different purulent infections.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Karumidze, N., Thomas, J.A., Kvatadze, N. et al. Characterization of lytic Pseudomonas aeruginosa bacteriophages via biological properties and genomic sequences. Appl Microbiol Biotechnol 94, 1609–1617 (2012). https://doi.org/10.1007/s00253-012-4119-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00253-012-4119-8


