Impact of plant derivatives on the growth of foodborne pathogens and the functionality of probiotics

Abstract

Numerous studies have been published on the antimicrobial and antioxidant properties of various plant components. However, there is relatively little information on the impact of such components on the enhancement of probiotics and production of antimicrobial compounds from these probiotics. Hence, this paper focuses on the influence of plant-derived components against pathogens, enhancement of cell viability and functionality of probiotics, and potential applications of such components in food safety and human health.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Agarry O, Olaleye M, Bello-Michael C (2005) Comparative antimicrobial activities of aloe vera gel and leaf. Afr J Biotechnol 4:1413–1414

    Google Scholar 

  2. Akahoshi R, Takahashi Y (1996) Yogurt containing bifidobacterium and process for producing the same. In: wo patent wo/1996/037,113

  3. Aksu Z, Kutsal T (1986) Lactic acid production from molasses utilizing Lactobacillus delbrueckii and invertase together. Biotechnol Lett 8:157–160

    CAS  Article  Google Scholar 

  4. Alakomi HL, Skytta E, Saarela M, Mattila-Sandholm T, Latva-Kala K, Helander I (2000) Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl Environ Microbiol 66:2001–2005

    CAS  Article  Google Scholar 

  5. Alberto MR, Farías ME, de Nadra MCM (2001) Effect of gallic acid and catechin on Lactobacillus hilgardii 5w growth and metabolism of organic compounds. J Agric Food Chem 49:4359–4363

    CAS  Article  Google Scholar 

  6. Ali SM, Khan AA, Ahmed I, Musaddiq M, Ahmed KS, Polasa H, Rao LV, Habibullah CM, Sechi LA, Ahmed N (2005) Antimicrobial activities of eugenol and cinnamaldehyde against the human gastric pathogen Helicobacter pylori. Ann Clin Microbiol Antimicrob 4:20

    Article  CAS  Google Scholar 

  7. Ankri S, Mirelman D (1999) Antimicrobial properties of allicin from garlic. Microbes Infect 1:125–129

    CAS  Article  Google Scholar 

  8. Antonious GF, Berke T, Jarret RL (2009) Pungency in Capsicum chinense: variation among countries of origin. J Environ Sci Health (B) 44:179–184

    CAS  Article  Google Scholar 

  9. Arques JL, Fernandez J, Gaya P, Nunez M, Medina M (2004) Antimicrobial activity of reuterin in combination with nisin against foodborne pathogens. Int J Food Microbiol 95:225–229

    CAS  Article  Google Scholar 

  10. Arunkumar S, Muthuselvam M (2009) Analysis of phytochemical constituents and antimicrobial activities of Aloe vera L. against clinical pathogens. World J Agric Sci 5:572–576

    CAS  Google Scholar 

  11. Aureli P, Costantini A, Zolea S (1992) Antimicrobial activity of some plant essential oils against Listeria monocytogenes. J Food Protect 55:344–348

    Google Scholar 

  12. Avato P, Tursi F, Vitali C, Miccolis V, Candido V (2000) Allylsulfide constituents of garlic volatile oil as antimicrobial agents. Phytomedicine 7:239–243

    CAS  Article  Google Scholar 

  13. Ávila M, Hidalgo M, Sánchez-Moreno C, Pelaez C, Requena T, Pascual-Teresa S (2009) Bioconversion of anthocyanin glycosides by Bifidobacteria and Lactobacillus. Food Res Int 42:1453–1461

    Article  CAS  Google Scholar 

  14. Axelsson L, Chung T, Dobrogosz W, Lindgren S (1989) Production of a broad spectrum antimicrobial substance by Lactobacillus reuteri. Microb Ecol Health Dis 2:131–136

    Article  Google Scholar 

  15. Bajpai V, Rahman A, Dung N, Huh M, Kang S (2008) In vitro inhibition of food spoilage and foodborne pathogenic bacteria by essential oil and leaf extracts of Magnolia liliflora desr. J Food Sci 73:M314–M320

    CAS  Article  Google Scholar 

  16. Baņķn S, Díaz P, Rodríguez M, Garrido MD, Price A (2007) Ascorbate, green tea and grape seed extracts increase the shelf life of low sulphite beef patties. Meat Sci 77:626–633

    Article  CAS  Google Scholar 

  17. Baskaran SA, Amalaradjou MAR, Hoagland T, Venkitanarayanan K (2010) Inactivation of Escherichia coli O157: H7 in apple juice and apple cider by trans-cinnamaldehyde. Int J Food Microbiol 141:126–129

    CAS  Article  Google Scholar 

  18. Behrad S, Yusof M, Goh K, Baba A (2009) Manipulation of probiotics fermentation of yogurt by cinnamon and licorice: effects on yogurt formation and inhibition of Helicobacter pylori growth in vitro. World Acad Sci Eng Tech 60:590–594

    Google Scholar 

  19. Belguith H, Kthiri F, Ben Ammar A, Jaafoura H, Ben Hamida J, Landoulsi A (2009) Morphological and biochemical changes of Salmonella hadar exposed to aqueous garlic extract. Int J Morphol 27:705–713

    Article  Google Scholar 

  20. Beuchat LR, Golden DA (1989) Antimicrobials occurring naturally in foods. Food Technol 43:134–142

    CAS  Google Scholar 

  21. Bezkorovainy A (2001) Probiotics: determinants of survival and growth in the gut. Am J Clin Nutr 73:399S

    CAS  Google Scholar 

  22. Bezkorovainy A, Kot E, Miller-Catchpole R, Haloftis G, Furmanov S (1996) Iron metabolism in bifidobacteria. Int Dairy J 6:905–919

    CAS  Article  Google Scholar 

  23. Bialonska D, Kasimsetty SG, Schrader KK, Ferreira D (2009) The effect of pomegranate (Punica granatum L.) byproducts and ellagitannins on the growth of human gut bacteria. J Agric Food Chem 57:8344–8349

    CAS  Article  Google Scholar 

  24. Bian L, Molan AL, Maddox I, Shu Q (2011) Antimicrobial activity of Lactobacillus reuteri DPC16 supernatants against selected food borne pathogens. World J Microbiol Biotechnol 1–8

  25. Bisignano G, Tomaino A, Cascio RL, Crisafi G, Uccella N, Saija A (1999) On the in–vitro antimicrobial activity of oleuropein and hydroxytyrosol. J Pharm Pharmacol 51:971–974

    CAS  Article  Google Scholar 

  26. Bomba A, Nemcová R, Mudroová D, Guba P (2002) The possibilities of potentiating the efficacy of probiotics. Trends Food Sci Technol 13:121–126

    CAS  Article  Google Scholar 

  27. Bomba A, Jonecova Z, Koscova J, Nemcova R, Gancarikova S, Mudronova D, Scirankova L, Buleca V, Lazar G, Posivak J, Kastel R, Marekova M (2006) The improvement of probiotics efficacy by synergistically acting components of natural origin: a review. Biologia 61:729–734

    Article  Google Scholar 

  28. Boyaval P (1989) Lactic acid bacteria and metal ions. Le Lait 69:87–113

    CAS  Article  Google Scholar 

  29. Brul S, Coote P (1999) Preservative agents in foods: Mode of action and microbial resistance mechanisms. Int J Food Microbiol 50:1–17

    CAS  Article  Google Scholar 

  30. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94:223–253

    CAS  Article  Google Scholar 

  31. Burt SA, Reinders RD (2003) Antibacterial activity of selected plant essential oils against Escherichia coli O157: H7. Lett Appl Microbiol 36:162–167

    CAS  Article  Google Scholar 

  32. Caccioni DRL, Guizzardi M, Biondi DM (1998) Relationship between volatile components of citrus fruit essential oils and antimicrobial action on Penicillium digitatum and Penicillium italicum. Int J Food Microbiol 43:73–79

    CAS  Article  Google Scholar 

  33. Calomme M, Branden K, Berghe D (1995) Selenium and Lactobacillus species. J Appl Microbiol 79:331–340

    CAS  Article  Google Scholar 

  34. Careaga M, Fernandez E, Dorantes L, Mota L, Jaramillo ME, Hernandez-Sanchez H (2003) Antibacterial activity of Capsicum extract against Salmonella Typhimurium and Pseudomonas aeruginosa inoculated in raw beef meat. Int J Food Microbiol 83:331–335

    Article  Google Scholar 

  35. Chao SC, Young DG, Oberg CJ (2000) Screening for inhibitory activity of essential oils on selected bacteria, fungi and viruses. J Essent Oil Res 12:639–649

    CAS  Article  Google Scholar 

  36. Collins E, Hall B (1984) Growth of bifidobacteria in milk and preparation of Bifidobacterium infantis for a dietary adjunct. J Dairy Sci 67:1376–1380

    Article  Google Scholar 

  37. Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582

    CAS  Google Scholar 

  38. Cox S, Mann C, Markham J, Bell H, Gustafson J, Warmington J, Wyllie S (2000) The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J Appl Microbiol 88:170–175

    CAS  Article  Google Scholar 

  39. Davidson PM (2001) Chemical preservatives and naturally antimicrobial compounds. In: Doyle MP, Beuchat LR, Montville TJ (eds) Food microbiology: fundamentals and frontiers, 2nd edn. ASM, Washington, pp 593–628

    Google Scholar 

  40. Davidson P, Branden A (1981) Antimicrobial activity of non-halogenated phenolic compounds. J Food Protect 44:623–632

    CAS  Google Scholar 

  41. De Boever P, Deplancke B, Verstraete W (2000) Fermentation by gut microbiota cultured in a simulator of the human intestinal microbial ecosystem is improved by supplementing a soygerm powder. J Nutr 130:2599–2606

    Google Scholar 

  42. del Carmen S, de LeBlanc AM, Miyoshi A, Rocha CS, Azevedo V, LeBlanc JG (2011) Potential application of probiotics in the prevention and treatment of inflammatory bowel diseases. Ulcers. doi:10.1155/2011/841651

  43. Delaquis P, Mazza G (1995) Antimicrobial properties of isothiocyanates in food preservation. Food Technol 49:73–84

    CAS  Google Scholar 

  44. Derrickson-Tharrington E, Kendall PA, Sofos JN (2005) Inactivation of Escherichia coli O157: H7 during storage or drying of apple slices pretreated with acidic solutions. Int J Food Microbiol 99:79–89

    CAS  Article  Google Scholar 

  45. Dobrogosz WJ, Lindgren SE (1994) Method of determining the presence of an antibiotic produced by Lactobacillus reuteri. In: US Patent 5,352,586

  46. Dogasaki C, Shindo T, Furuhata K, Fukuyama M (2002) Identification of chemical structure of antibacterial components against Legionella pneumophila in a coffee beverage. Yakugaku zasshi 122:487–494

    CAS  Article  Google Scholar 

  47. Dorantes L, Colmenero R, Hernandez H, Mota L, Jaramillo ME, Fernandez E, Solano C (2000) Inhibition of growth of some foodborne pathogenic bacteria by Capsicum annuum extracts. Int J Food Microbiol 57:125–128

    Article  Google Scholar 

  48. Dorman H, Deans S (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316

    CAS  Article  Google Scholar 

  49. Duda-Chodak A, Tarko T, Statek M (2008) The effect of antioxidants on Lactobacillus casei cultures. Acta Sci Pol Technol Aliment 7:39–51

    CAS  Google Scholar 

  50. Durairaj S, Sangeetha S, Lakshmanaperumalsamy P (2009) In vitro antibacterial activity and stability of garlic extract at different pH and temperature. e J Bio 5:5–10

    Google Scholar 

  51. Eklund T (1980) Inhibition of growth and uptake processes in bacteria by some chemical food preservatives. J Appl Microbiol 48:423–432

    CAS  Article  Google Scholar 

  52. Elli M, Zink R, Rytz A, Reniero R, Morelli L (2000) Iron requirement of Lactobacillus spp. in completely chemically defined growth media. J Appl Microbiol 88:695–703

    CAS  Article  Google Scholar 

  53. Farag R, Daw Z, Hewedi F, El-Baroty G (1989) Antimicrobial activity of some Egyptian spice essential oils. J Food Protect 52:665–667

    CAS  Google Scholar 

  54. Fattouch S, Caboni P, Coroneo V, Tuberoso CIG, Angioni A, Dessi S, Marzouki N, Cabras P (2007) Antimicrobial activity of Tunisian quince (Cydonia oblonga Miller) pulp and peel polyphenolic extracts. J Agric Food Chem 55:963–969

    CAS  Article  Google Scholar 

  55. Fisher K, Phillips C (2008) Potential antimicrobial uses of essential oils in food: is citrus the answer? Trends Food Sci Technol 19:156–164

    CAS  Article  Google Scholar 

  56. Fukushima Y, Iino H (2006) Probiotics in food safety and human health: current status of regulations on the use of probiotics in foods in Japan. In: Goktepe I, Juneja VK, Ahmedna M (eds) Probiotics in food safety and human health. CRC /Taylor & Francis Group, Boca Raton, pp 431–463

    Google Scholar 

  57. Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66:365–378

    CAS  Article  Google Scholar 

  58. Gadang V, Hettiarachchy N, Johnson M, Owens C (2008) Evaluation of antibacterial activity of whey protein isolate coating incorporated with nisin, grape seed extract, malic acid, and EDTA on a turkey Frankfurter system. J Food Sci 73:M389–M394

    CAS  Article  Google Scholar 

  59. Gálvez A, Abriouel H, Benomar N, Lucas R (2010) Microbial antagonists to food-borne pathogens and biocontrol. Curr Opin Biotechnol 21:142–148

    Article  CAS  Google Scholar 

  60. Ghisalberti E (1994) The ethnopharmacology and phytochemistry of Eremophila species (Myoporaceae). J Ethnopharmacol 44:1–9

    CAS  Article  Google Scholar 

  61. Gill A, Holley R (2006) Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics. Int J Food Microbiol 108:1–9

    CAS  Article  Google Scholar 

  62. Goto K, Kanaya S, Ishigami T, Hara Y (1999) Effects of tea polyphenols on fecal conditions, part 2. The effects of tea catechins on fecal conditions of elderly residents in a long-term care facility. J Nutr Sci Vitaminol 45:135–141

    CAS  Article  Google Scholar 

  63. Grohs BM, Kunz B (2000) Use of spice mixtures for the stabilization of fresh portioned pork. Food Control 11:433–436

    Article  Google Scholar 

  64. Gustafson J, Liew Y, Chew S, Markham J, Bell H, Wyllie S, Warmington J (1998) Effects of tea tree oil on Escherichia coli. Lett Appl Microbiol 26:194–198

    CAS  Article  Google Scholar 

  65. Haddadin M (2010) Effect of olive leaf extracts on the growth and metabolism of two probiotic bacteria of intestinal origin. Pak J Nutr 9:787–793

    Article  Google Scholar 

  66. Hagiwara H, Seki T, Ariga T (2004) The effect of pre-germinated brown rice intake on blood glucose and PAI-1 levels in streptozotocin-induced diabetic rats. Biosci Biotechnol Biochem 68:444–447

    CAS  Article  Google Scholar 

  67. Halcón L, Milkus K (2004) Staphylococcus aureus and wounds: a review of tea tree oil as a promising antimicrobial. Am J Infect Control 32:402–408

    Article  Google Scholar 

  68. Hashimoto T, Kumazawa S, Nanjo F, Hara Y, Nakayama T (1999) Interaction of tea catechins with lipid bilayers investigated with liposome systems. Biosci Biotechnol Biochem 63:2252–2255

    CAS  Article  Google Scholar 

  69. Helander I, Mattila-Sandholm T (2000) Fluorometric assessment of gram–negative bacterial permeabilization. J Appl Microbiol 88:213–219

    CAS  Article  Google Scholar 

  70. Helander IM, Alakomi HL, Latva-Kala K, Mattila-Sandholm T, Pol I, Smid EJ, Gorris LGM, Von Wright A (1998) Characterization of the action of selected essential oil components on Gram-negative bacteria. J Agric Food Chem 46:3590–3595

    CAS  Article  Google Scholar 

  71. Hiramoto K, Ojima N, Sako KI, Kikugawa K (1996) Effect of plant phenolics on the formation of the spin-adduct of hydroxyl radical and the DNA strand breaking by hydroxyl radical. Biol Pharm Bull 19:558–563

    CAS  Article  Google Scholar 

  72. Holley RA, Patel D (2005) Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiol 22:273–292

    CAS  Article  Google Scholar 

  73. Hosein AM, Breidt F Jr, Smith CE (2011) Modeling the effects of sodium chloride, acetic acid, and intracellular pH on survival of Escherichia coli O157: H7. Appl Environ Microbiol 77:889–895

    CAS  Article  Google Scholar 

  74. Ibrahim SA (2005) Composition and method for inhibition of harmful bacteria. In: US Patent 6,932,992

  75. Ibrahim SA, Bezkorovainy A (1994) Growth–promoting factors for Bifidobacterium longum. J Food Sci 59:189–191

    CAS  Article  Google Scholar 

  76. Ibrahim SA, Salameh MM (2001) Simple and rapid method for screening antimicrobial activities of Bifidobacterium species of human isolates. J Rapid Meth Autom Microbiol 9:53–62

    CAS  Article  Google Scholar 

  77. Ibrahim SA, Dharmavavaram S, Seo C, Shahbazi G (2003) Antimicrobial activity of Bifidobacterium longum (NCFB 2259) as influenced by spices. Int J Food Saf 2:6–8

    Google Scholar 

  78. Ibrahim SA, Salameh M, Phetsomphou S, Yang H, Seo C (2006) Application of caffeine, 1, 3, 7-trimethylxanthine, to control Escherichia coli O157: H7. Food Chem 99:645–650

    CAS  Article  Google Scholar 

  79. Ibrahim SA, Tse T, Yang H, Fraser A (2009) Antibacterial activity of a crude chive extract against Salmonella in culture medium, beef broth and chicken broth. Food Prot Trends 29:155–160

    Google Scholar 

  80. Ibrahim SA, Alazzeh AY, Awaisheh SS, Song D, Shahbazi A, AbuGhazaleh AA (2010) Enhancement of α- and β-galactosidase activity in Lactobacillus reuteri by different metal ions. Biol Trace Elem Res 136:106–116

    CAS  Article  Google Scholar 

  81. Ikigai H, Nakae T, Hara Y, Shimamura T (1993) Bactericidal catechins damage the lipid bilayer. BBA Biomembranes 1147:132–136

    CAS  Article  Google Scholar 

  82. Indu M, Hatha A, Abirosh C, Harsha U, Vivekanandan G (2006) Antimicrobial activity of some of the south-Indian spices against serotypes of Escherichia coli, Salmonella, Listeria monocytogenes and Aeromonas hydrophila. Braz J Microbiol 37:153–158

    Article  Google Scholar 

  83. Jack R, Tagg B, Ray J (1995) Bacteriocins of gram-positive bacteria. Microbiol Rev 59:171–200

    CAS  Google Scholar 

  84. Jaquet M, Rochat I, Moulin J, Cavin C, Bibiloni R (2009) Impact of coffee consumption on the gut microbiota: a human volunteer study. Int J Food Microbiol 130:117–121

    CAS  Article  Google Scholar 

  85. Jayakumar T, Thomas P, Sheu J, Geraldine P (2011) In-vitro and in-vivo antioxidant effects of the oyster mushroom Pleurotus ostreatus. Food Res Int 44:851–861

    CAS  Article  Google Scholar 

  86. Jo C, Son JH, Son CB, Byun MW (2003) Functional properties of raw and cooked pork patties with added irradiated, freeze-dried green tea leaf extract powder during storage at 4°C. Meat Sci 64:13–17

    CAS  Article  Google Scholar 

  87. Juglal S, Govinden R, Odhav B (2002) Spice oils for the control of co-occurring mycotoxin-producing fungi. J Food Protect 65:683–687

    CAS  Google Scholar 

  88. Juven B, Kanner J, Schved F, Weisslowicz H (1994) Factors that interact with the antibacterial action of thyme essential oil and its active constituents. J Appl Microbiol 76:626–631

    CAS  Article  Google Scholar 

  89. Kabara J, Eklund T (1991) Organic acids and esters. In: Russell NJ, Gould GW (eds) Food preservatives, 1st edn. Blackie, Glasgow, pp 44–71

    Google Scholar 

  90. Kang DH, Fung DYC (2000) Stimulation of starter culture for further reduction of foodborne pathogens during salami fermentation. J Food Protect 63:1492–1495

    CAS  Google Scholar 

  91. Kelly D, Begbie R, King T (1994) Nutritional influences on interactions between bacteria and the small intestinal mucosa. Nutr Res Rev 7:233–258

    CAS  Article  Google Scholar 

  92. Kiessling CR, Cutting JH, Loftis M, Kiessling WM, Datta AR, Sofos JN (2002) Antimicrobial resistance of food-related Salmonella isolates, 1999–2000. J Food Protect 65:603–608

    CAS  Google Scholar 

  93. Kim S, Fung D (2004) Antibacterial effect of crude water–soluble arrowroot (Puerariae radix) tea extracts on food–borne pathogens in liquid medium. Lett Appl Microbiol 39:319–325

    CAS  Article  Google Scholar 

  94. Kim J, Marshall MR, Wei C (1995) Antibacterial activity of some essential oil components against five foodborne pathogens. J Agric Food Chem 43:2839–2845

    CAS  Article  Google Scholar 

  95. Kim S, Ruengwilysup C, Fung D (2004) Antibacterial effect of water-soluble tea extracts on foodborne pathogens in laboratory medium and in a food model. J Food Protect 67:2608–2612

    CAS  Google Scholar 

  96. Kramer RP, Hindorf H, Jha HC, Kallage J, Zilliken F (1984) Antifungal activity of soybean and chickpea isoflavones and their reduced derivatives. Phytochemistry 23:2203–2205

    Article  Google Scholar 

  97. Kristanti R, Punbusayakul N (2008) Antioxidant and antimicrobial activity of commercial green tea in Chiang Rai. Acta Horticulturae 53–58

  98. Lafay S, Gil-Izquierdo A (2008) Bioavailability of phenolic acids. Phytochem Rev 7:301–311

    CAS  Article  Google Scholar 

  99. Lambert P, Hammond S (1973) Potassium fluxes, first indications of membrane damage in microorganisms. Biochem Biophys Res Commun 54:796–799

    CAS  Article  Google Scholar 

  100. Lambert R, Skandamis PN, Coote PJ, Nychas GJE (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol 91:453–462

    CAS  Article  Google Scholar 

  101. Lanciotti R, Gianotti A, Patrignani F, Belletti N, Guerzoni M, Gardini F (2004) Use of natural aroma compounds to improve shelf-life and safety of minimally processed fruits. Trends Food Sci Technol 15:201–208

    CAS  Article  Google Scholar 

  102. Larrosa M, Yañéz-Gascón MJ, Selma MV, González-Sarrías A, Toti S, Cerón JJ, Tomás-Barberán F, Dolara P, Espín JC (2009) Effect of a low dose of dietary resveratrol on colon microbiota, inflammation and tissue damage in a DSS-induced colitis rat model. J Agric Food Chem 57:2211–2220

    CAS  Article  Google Scholar 

  103. Lee SY, Jin HH (2008) Inhibitory activity of natural antimicrobial compounds alone or in combination with nisin against Enterobacter sakazakii. Lett Appl Microbiol 47:315–321

    CAS  Article  Google Scholar 

  104. Lee HC, Jenner AM, Low CS, Lee YK (2006) Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res Microbiol 157:876–884

    CAS  Article  Google Scholar 

  105. Lemos T, Matos F, Alencar J, Craveiro A, Clark A, McChesney J (1990) Antimicrobial activity of essential oils of Brazilian plants. Phytother Res 4:82–84

    Article  Google Scholar 

  106. Leuschner RGK, Zamparini J (2002) Effects of spices on growth and survival of Escherichia coli O157 and Salmonella enterica serovar Enteritidis in broth model systems and mayonnaise. Food Control 13:399–404

    Article  Google Scholar 

  107. Lin MY, Yen CL (1999) Antioxidative ability of lactic acid bacteria. J Agric Food Chem 47:1460–1466

    CAS  Article  Google Scholar 

  108. Liu Y, Cheng G, Han T, Yang H, Ibrahim S, Huang W (2011) Microbial transformation of tectoridin from Pueraria flos by Lactobacillus and bifidobacteria. Food Chem 131:149–154

    Article  CAS  Google Scholar 

  109. Lopez-Malo A, Alzamora SM, Palou E (2005) Naturally occurring compounds: plant sources. In: Davidson PM, Sofos JN, Branen AL (eds) Antimicrobials in food, 3rd edn. CRC, New York, pp 429–251

    Google Scholar 

  110. Lv F, Liang H, Yuan Q, Li C (2011) In vitro antimicrobial effects and mechanism of action of selected plant essential oil combinations against four food-related microorganisms. Food Res Int 44:3057–3064

    CAS  Article  Google Scholar 

  111. Maillard JY (2002) Bacterial target sites for biocide action. J Appl Microbiol 92:16S–27S

    Article  Google Scholar 

  112. Makras L, De Vuyst L (2006) The in vitro inhibition of Gram-negative pathogenic bacteria by bifidobacteria is caused by the production of organic acids. Int Dairy J 16:1049–1057

    CAS  Article  Google Scholar 

  113. Mandalari G, Faulks RM, Bisignano C, Waldron KW, Narbad A, Wickham MSJ (2010) In vitro evaluation of the prebiotic properties of almond skins (Amygdalus communis L.). FEMS Microbiol Lett 304:116–122

    CAS  Article  Google Scholar 

  114. Manderson K, Pinart M, Tuohy K, Grace W, Hotchkiss A, Widmer W, Yadhav M, Gibson G, Rastall R (2005) In vitro determination of prebiotic properties of oligosaccharides derived from an orange juice manufacturing by-product stream. Appl Environ Microbiol 71:8383–8389

    CAS  Article  Google Scholar 

  115. Markin D, Duek L, Berdicevsky I (2003) In vitro antimicrobial activity of olive leaves. Mycoses 46:132–136

    CAS  Article  Google Scholar 

  116. Mau JL, Chen CP, Hsieh PC (2001) Antimicrobial effect of extracts from Chinese chive, cinnamon, and corni fructus. J Agric Food Chem 49:183–188

    CAS  Article  Google Scholar 

  117. McDonald I (1957) Effect of acetate, citrate, and divalent metal ions on utilization of sodium caseinate by lactic streptococci. Can J Microbiol 3:411–417

    CAS  Article  Google Scholar 

  118. Michael M, Phebus RK, Schmidt KA (2010) Impact of a plant extract on the viability of Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus in nonfat yogurt. Int Dairy J 20:665–672

    Article  Google Scholar 

  119. Miller-Catchpole R, Kot E, Haloftis G, Furmanov S, Bezkorovainy A (1997) Lactoferrin can supply iron for the growth of Bifidobacterium breve. Nutr Res 17:205–213

    CAS  Article  Google Scholar 

  120. Moran JF, Klucas RV, Grayer RJ, Abian J, Becana M (1997) Complexes of iron with phenolic compounds from soybean nodules and other legume tissues: prooxidant and antioxidant properties. Free Radic Biol Med 22:861–870

    CAS  Article  Google Scholar 

  121. Morrison Z, Ibrahim SA, Salameh A, Shahbazi A, Seo, CW (2001) Continuous production of antimicrobial compound(s) and organic acids by bifidobacteria cells entrapped. J Dairy Sci 84: Suppl 1. Abst 747.

    Google Scholar 

  122. Nakashima A (1997) Stimulatory effect of phytin and acid production by Lactobacillus casei. J Nutr Sci Vitamonol 43:419–424

    CAS  Article  Google Scholar 

  123. Nanasombat S, Lohasupthawee P (2005) Antibacterial activity of crude ethanolic extracts and essential oils of spices against Salmonellae and other enterobacteria. KMITL Sci Tech J 5:527–538

    Google Scholar 

  124. Ndi CP, Semple SJ, Griesser HJ, Barton MD (2007) Antimicrobial activity of some Australian plant species from the genus Eremophila. J Basic Microbiol 47:158–164

    Article  Google Scholar 

  125. Nkanga E, Uraih N (1981) Prevalence of Staphylococcus aureus in meat samples from traditional markets in Benin City, Nigeria and probable control by use condiments. J Food Protect 44:4–8

    Google Scholar 

  126. Nychas G (1995) Natural antimicrobials from plants. In: Gould GW (ed) New methods of food preservation. Black Academic & Professional, Glasgow, pp 58–89

    Google Scholar 

  127. Oh SH, Soh JR, Cha YS (2003) Germinated brown rice extract shows a nutraceutical effect in the recovery of chronic alcohol-related symptoms. J Med Food 6:115–121

    CAS  Article  Google Scholar 

  128. Olano-Martin E, Gibson G, Rastall R (2002) Comparison of the in vitro bifidogenic properties of pectins and pectic–oligosaccharides. J Appl Microbiol 93:505–511

    CAS  Article  Google Scholar 

  129. Olasupo N, Fitzgerald D, Gasson M, Narbad A (2003) Activity of natural antimicrobial compounds against Escherichia coli and Salmonella enterica serovar Typhimurium. Lett Appl Microbiol 37:448–451

    CAS  Article  Google Scholar 

  130. Olasupo N, Fitzgerald D, Narbad A, Gasson M (2004) Inhibition of Bacillus subtilis and Listeria innocua by nisin in combination with some naturally occurring organic compounds. J Food Protect 67:596–600

    CAS  Google Scholar 

  131. Orrhage K, Lidbeck A, Nord C (1991) Effect of Bifidobacterium longum supplements on the human faecal microflora. Microb Ecol Health Dis 4:265–270

    Article  Google Scholar 

  132. O'Sullivan DJ (2001) Screening of intestinal microflora for effective probiotic bacteria. J Agric Food Chem 49:1751–1760

    Article  CAS  Google Scholar 

  133. Oussalah M, Caillet S, Lacroix M (2006) Mechanism of action of Spanish oregano, Chinese cinnamon, and savory essential oils against cell membranes and walls of Escherichia coli O157: H7 and Listeria monocytogenes. J Food Protect 69:1046–1055

    Google Scholar 

  134. Ouwehand AC, Tuomola EM, Tolkko S, Salminen S (2001) Assessment of adhesion properties of novel probiotic strains to human intestinal mucus. Int J Food Microbiol 64:119–126

    CAS  Article  Google Scholar 

  135. Ouwehand AC, Salminen S, Isolauri E (2002) Probiotics: an overview of beneficial effects. Anton Van Lee 82:279–289

    CAS  Article  Google Scholar 

  136. Özkan G, Sagdic O, Göktürk Baydar N, Kurumahmutoglu Z (2004) Antibacterial activities and total phenolic contents of grape pomace extracts. J Sci Food Agric 84:1807–1811

    Article  CAS  Google Scholar 

  137. Pandit V, Shelef L (1994) Sensitivity of Listeria monocytogenes to rosemary (Rosmarinus officinalis L.). Food Microbiol 11:57–63

    Article  Google Scholar 

  138. Panesar PS, Shinde C (2012) Effect of storage on syneresis, pH, Lactobacillus acidophilus count. Bifidobacterium bifidum count of aloe vera fortified probiotic yoghurt. Curr Res Dairy Sci. doi:10.3923/crds.2011

  139. Parkar SG, Stevenson DE, Skinner MA (2008) The potential influence of fruit polyphenols on colonic microflora and human gut health. Int J Food Microbiol 124:295–298

    CAS  Article  Google Scholar 

  140. Parvez S, Malik K, Ah Kang S, Kim HY (2006) Probiotics and their fermented food products are beneficial for health. J Appl Microbiol 100:1171–1185

    CAS  Article  Google Scholar 

  141. Pauli A, Knobloch K (1987) Inhibitory effects of essential oil components on growth of food-contaminating fungi. Z Lebensm Unters Forsch 185:10–13

    CAS  Article  Google Scholar 

  142. Percival M (1997) Choosing a probiotic supplement. Clin Nutr Insights 6:1–4

    Google Scholar 

  143. Perumalla A, Hettiarachchy N (2011) Green tea and grape seed extracts—potential applications in food safety and quality. Food Res Int 44:827–839

    CAS  Article  Google Scholar 

  144. Playne M (1994) Probiotic foods. Food Aust 46:362–366

    Google Scholar 

  145. Plummer SF, Garaiova I, Sarvotham T, Cottrell S, Le Scouiller S, Weaver MA, Tang J, Dee P, Hunter J (2005) Effects of probiotics on the composition of the intestinal microbiota following antibiotic therapy. Int J Antimicrob Agents 26:69–74

    CAS  Article  Google Scholar 

  146. Poch M, Bezkorovainy A (1988) Growth-enhancing supplements for various species of the genus Bifidobacterium. J Dairy Sci 71:3214–3221

    CAS  Article  Google Scholar 

  147. Pratt D, Powers JJ, Somaatmadja D (1960) Anthocyanins. I. The influence of strawberry and grape anthocyanins on the growth of certain bacteria. J Food Sci 25:26–32

    CAS  Article  Google Scholar 

  148. Proestos C, Boziaris IS, Kapsokefalou M, Komaitis M (2008) Natural antioxidant constituents from selected aromatic plants and their antimicrobial activity against selected pathogenic microorganisms. Food Tech Biotechnol 46:151–156

    CAS  Google Scholar 

  149. Puupponen-Pimiä R, Nohynek L, Meier C, Kähkönen M, Heinonen M, Hopia A, Oksman-Caldentey KM (2001) Antimicrobial properties of phenolic compounds from berries. J Appl Microbiol 90:494–507

    Article  Google Scholar 

  150. Puupponen-Pimiä R, Nohynek L, Hartmann-Schmidlin S, Kähkönen M, Heinonen M, Määttä-Riihinen K, Oksman-Caldentey KM (2005) Berry phenolics selectively inhibit the growth of intestinal pathogens. J Appl Microbiol 98:991–1000

    Article  CAS  Google Scholar 

  151. Raccach M (1984) The antimicrobial activity of phenolic antioxidants in foods: a review. J Food Saf 6:141–170

    CAS  Article  Google Scholar 

  152. Rasch M, Metris A, Baranyi J, Bjorn Budde B (2007) The effect of reuterin on the lag time of single cells of Listeria innocua grown on a solid agar surface at different pH and NaCl concentrations. Int J Food Microbiol 113:35–40

    CAS  Article  Google Scholar 

  153. Rasooli I, Rezaei MB, Allameh A (2006) Ultrastructural studies on antimicrobial efficacy of thyme essential oils on Listeria monocytogenes. Int J Infect Dis 10:236–241

    Article  Google Scholar 

  154. Raybaudi-Massilia RM, Mosqueda-Melgar J, Martin-Belloso O (2006) Antimicrobial activity of essential oils on Salmonella Enteritidis, Escherichia coli, and Listeria innocua in fruit juices. J Food Protect 69:1579–1586

    CAS  Google Scholar 

  155. Reinders RD, Biesterveld S, Bijker PGH (2001) Survival of Escherichia coli O157: H7 ATCC 43895 in a model apple juice medium with different concentrations of proline and caffeic acid. Appl Environ Microbiol 67:2863–2866

    CAS  Article  Google Scholar 

  156. Rico-Munoz E, Bargiota E, Davidson P (1987) Effect of selected phenolic compounds on the membrane-bound adenosine triphosphatase of Staphylococcus aureus. Food Microbiol 4:239–249

    CAS  Article  Google Scholar 

  157. Roberfroid MB (2000) Prebiotics and probiotics: are they functional foods? Am J Clin Nutr 71:1682S

    CAS  Google Scholar 

  158. Rogosa M, Mitchell JA (1950) The indispensability of magnesium for Lactobacillus helveticus and its unavailability in a magnesium-azide complex. Bacteriol Proc 130

  159. Rosenthal I, Rosen B, Bernstein S (1997) Phenols in milk. Evaluation of ferulic acid and other phenols as antifungal agents. Milchwissenschaft 52:134–138

    CAS  Google Scholar 

  160. Rosenthal I, Bernstein S, Nakimbugwe D (1999) Effects of tea solids on milk. Mil chwissenschaft 54:149–152

    CAS  Google Scholar 

  161. Salem MME, Ibrahim SA, Kim C, Seo CW, Shahbazi A, AbuGhazaleh A (2009) Lactic acid production from apple skin waste by immobilized cells of Lactobacillus reuteri. In: Uzoechokwu GA et al (eds) Proceedings of the 2007 National Conference on Environmental Science and Technology. Springer, New York, pp 31–37

    Google Scholar 

  162. Sedighi R, Tajkarimi M, Ibrahim SA (2011) Comparison between E. coli O157:H7 and Bifibobacterium spp. activity in almond pudding infant supplemental food. Food Nutr Sci 2:909–915

    Article  Google Scholar 

  163. Servin AL (2004) Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol Rev 28:405–440

    CAS  Article  Google Scholar 

  164. Servin AL, Coconnier MH (2003) Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract Res Clin Gastroenterol 17:741–754

    CAS  Article  Google Scholar 

  165. Shan B, Cai YZ, Brooks JD, Corke H (2007) The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int J Food Microbiol 117:112–119

    CAS  Article  Google Scholar 

  166. Shelef L (1984) Antimicrobial effects of spices. J Food Saf 6:29–44

    CAS  Article  Google Scholar 

  167. Shimamura T, Zhao WH, Hu ZQ (2007) Mechanism of action and potential for use of tea catechin as an antiinfective agent. Anti-Infect Agents Med Chem (Formerly Curr Med Chem Anti-Infect Agents) 6:57–62

    CAS  Google Scholar 

  168. Skandamis P, Tsigarida E, Nychas G (2002) The effect of oregano essential oil on survival/death of Salmonella Typhimurium in meat stored at 5°C under aerobic, VP/MAP conditions. Food Microbiol 19:97–103

    CAS  Article  Google Scholar 

  169. Sklenickova O, Flesar J, Kokoska L, Vlkova E, Halamova K, Malik J (2010) Selective growth inhibitory effect of biochanin A against intestinal tract colonizing bacteria. Molecules 15:1270–1279

    CAS  Article  Google Scholar 

  170. Smith AH, Zoetendal E, Mackie RI (2005) Bacterial mechanisms to overcome inhibitory effects of dietary tannins. Microb Ecol 50:197–205

    CAS  Article  Google Scholar 

  171. Smith-Palmer A, Stewart J, Fyfe L (2001) The potential application of plant essential oils as natural food preservatives in soft cheese. Food Microbiol 18:463–470

    CAS  Article  Google Scholar 

  172. Sofos J, Beuchat L, Davidson P, Johnson E (1998) Naturally occurring antimicrobials in food: task force report no. 132. Council for Agricultural Science and Technology, Ames, Iowa, 103.

  173. Spiller F, Alves MK, Vieira SM, Carvalho TA, Leite CE, Lunardelli A, Poloni JA, Cunha FQ, Oliveira JR (2008) Anti–inflammatory effects of red pepper (Capsicum baccatum) on carrageenan– and antigen–induced inflammation. J Pharm Pharmacol 60:473–478

    CAS  Article  Google Scholar 

  174. Spyropoulos BG, Misiakos EP, Fotiadis C, Christos NS (2011) Antioxidant properties of probiotics and their protective effects in the pathogenesis of radiation-induced enteritis and colitis. Dig Dis Sci 56:285–294

    Article  Google Scholar 

  175. Srinivasan D, Nathan S, Suresh T, Lakshmana Perumalsamy P (2001) Antimicrobial activity of certain Indian medicinal plants used in folkloric medicine. J Ethnopharmacol 74:217–220

    CAS  Article  Google Scholar 

  176. Stamer J, Albury MN, Pederson C (1964) Substitution of manganese for tomato juice in the cultivation of lactic acid bacteria. Appl Microbiol 12:165–168

    CAS  Google Scholar 

  177. Sutherland J, Miles M, Hedderley D, Li J, Devoy S, Sutton K, Lauren D (2009) In vitro effects of food extracts on selected probiotic and pathogenic bacteria. Int J Food Sci Nutr 60:717–727

    CAS  Article  Google Scholar 

  178. Tabasco R, Sánchez-Patán F, Monagas M, Bartolomé B, Moreno-Arribas M, Peláez C, Requena T (2011) Effect of grape polyphenols on lactic acid bacteria and bifidobacteria growth: resistance and metabolism. Food Microbiol 28:1345–1352

    CAS  Article  Google Scholar 

  179. Tajkarimi M, Ibrahim SA, Cliver D (2010) Antimicrobial herb and spice compounds in food. Food Control 21:1199–1218

    CAS  Article  Google Scholar 

  180. Talarico T, Casas I, Chung TC, Dobrogosz W (1988) Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrob Agents Chemother 32:1854–1858

    CAS  Google Scholar 

  181. Talarico TL, Axelsson LT, Novotny J, Fiuzat M, Dobrogosz WJ (1990) Utilization of glycerol as a hydrogen acceptor by Lactobacillus reuteri: purification of 1, 3-propanediol: NAD+ oxidoreductase. Appl Environ Microbiol 56:943–948

    CAS  Google Scholar 

  182. Tang S, Kerry JP, Sheehan D, Buckley DJ, Morrissey PA (2001) Antioxidative effect of added tea catechins on susceptibility of cooked red meat, poultry and fish patties to lipid oxidation. Food Res Int 34:651–657

    CAS  Article  Google Scholar 

  183. Tassou C, Koutsoumanis K, Nychas GJE (2000) Inhibition of Salmonella enteritidis and Staphylococcus aureus in nutrient broth by mint essential oil. Food Res Int 33:273–280

    CAS  Article  Google Scholar 

  184. Tewari H, Sethi R, Sood A, Singh L (1985) Lactic acid production from paneer whey by Lactobacillus bulgaricus. J Res Punjab Agric Univ 22:89–98

    CAS  Google Scholar 

  185. Thomas T, Batt R (1968) Survival of Streptococcus lactis in starvation conditions. J Gen Microbiol 50:367–382

    CAS  Google Scholar 

  186. Tian S, Nakamura K, Kayahara H (2004) Analysis of phenolic compounds in white rice, brown rice, and germinated brown rice. J Agric Food Chem 52:4808–4813

    CAS  Article  Google Scholar 

  187. Tiwari K, Mishra N, Pandey A (1980) Influence of EDTA and its metal complexes on lactic acid fermentation. Zbl Bakt 135:223–225

    CAS  Google Scholar 

  188. Trachoo N, Boudreaux C, Moongngarm A, Samappito S, Gaensakoo R (2006) Effect of geminated rough rice media on growth of selected probiotic bacteria. Pak J Biol Sci 9:2657–2661

    Article  Google Scholar 

  189. Turgis M, Borsa J, Millette M, Salmieri S, Lacroix M (2008) Effect of selected plant essential oils or their constituents and modified atmosphere packaging on the radiosensitivity of Escherichia coli O157: H7 and Salmonella Typhi in ground beef. J Food Protect 71:516–521

    CAS  Google Scholar 

  190. Turgis M, JaeJoon H, Caillet S, Lacroix M (2009) Antimicrobial activity of mustard essential oil against Escherichia coli O157: H7 and Salmonella Typhi. Food Control 20:1073–1079

    CAS  Article  Google Scholar 

  191. Ultee A, Kets E, Smid E (1999) Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Appl Environ Microbiol 65:46064610

    Google Scholar 

  192. Vandenbergh PA (1993) Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiol Rev 12:221–237

    CAS  Article  Google Scholar 

  193. Wahba M, Ahmed AS, Ebraheim ZZ (2010) Antimicrobial effects of pepper, parsley, and dill and their roles in the microbiological quality enhancement of traditional Egyptian kareish cheese. Foodborne Pathog Dis 7:411–418

    CAS  Article  Google Scholar 

  194. Walsh SE, Maillard JY, Russell A, Catrenich C, Charbonneau D, Bartolo R (2003) Activity and mechanisms of action of selected biocidal agents on Gram–positive and–negative bacteria. J Appl Microbiol 94:240–247

    CAS  Article  Google Scholar 

  195. Wang WB, Lai HC, Hsueh PR, Robin YYC, Lin SB, Liaw SJ (2006) Inhibition of swarming and virulence factor expression in Proteus mirabilis by resveratrol. J Med Microbiol 55:1313–1321

    CAS  Article  Google Scholar 

  196. Weinberg ED (1997) The Lactobacillus anomaly: total iron abstinence. Perspect Biol Med 40:578–583

    CAS  Google Scholar 

  197. Weisburger JH (1999) Tea and health: the underlying mechanisms. Exp Biol Med 220:271–275

    CAS  Article  Google Scholar 

  198. Weisburger JH (2000) Eat to live, not live to eat. Nutrition 16:767–773

    CAS  Article  Google Scholar 

  199. Wendakoon CN, Sakaguchi M (1995) Inhibition of amino acid decarboxylase activity of Enterobacter aerogenes by active components in spices. J Food Protect 58:280–283

    CAS  Google Scholar 

  200. Wijeratne SSK, Cuppett SL, Schlegel V (2005) Hydrogen peroxide induced oxidative stress damage and antioxidant enzyme response in Caco-2 human colon cells. J Agric Food Chem 53:8768–8774

    CAS  Article  Google Scholar 

  201. Wishon LM, Song D, Ibrahim S (2010) Effect of metals on growth and functionality of Lactobacillus and Bifidobacteria. Milchwissenschaft 65:369–372

    CAS  Google Scholar 

  202. Yadav S, Gite S, Nilegaonkar S, Agte V (2011) Effect of supplementation of micronutrients and phytochemicals to fructooligosaccharides on growth response of probiotics and E. coli. BioFactors, vol 37. Oxford, England, p 58

    Google Scholar 

  203. Zaika L, Kissinger J (1979) Effects of some spices on acid production by starter cultures. J Food Protect 42:572–576

    CAS  Google Scholar 

  204. Zaika LL, Kissinger JC (1984) Fermentation enhancement by spices: identification of active component. J Food Sci 49:5–9

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by USDA National Institute of Food and Agriculture, Hatch project number NC.X-234-5-09-170-1 in the Agricultural Research Program at North Carolina Agricultural and Technical State University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Salam A. Ibrahim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gyawali, R., Ibrahim, S.A. Impact of plant derivatives on the growth of foodborne pathogens and the functionality of probiotics. Appl Microbiol Biotechnol 95, 29–45 (2012). https://doi.org/10.1007/s00253-012-4117-x

Download citation

Keywords

  • Plant components
  • Probiotics
  • Viability
  • Pathogens