Abstract
Surfaces of massive chalcopyrite (CuFeS2) electrodes were modified by applying variable oxidation potential pulses under growth media in order to induce the formation of different secondary phases (e.g., copper-rich polysulfides, S n 2−; elemental sulfur, S0; and covellite, CuS). The evolution of reactivity (oxidation capacity) of the resulting chalcopyrite surfaces considers a transition from passive or inactive (containing CuS and S n 2−) to active (containing increasing amounts of S0) phases. Modified surfaces were incubated with cells of sulfur-oxidizing bacteria (Acidithiobacillus thiooxidans) for 24 h in a specific culture medium (pH 2). Abiotic control experiments were also performed to compare chemical and biological oxidation. After incubation, the density of cells attached to chalcopyrite surfaces, the structure of the formed biofilm, and their exopolysaccharides and nucleic acids were analyzed by confocal laser scanning microscopy (CLSM) and scanning electron microscopy coupled to dispersive X-ray analysis (SEM-EDS). Additionally, CuS and S n 2−/S0 speciation, as well as secondary phase evolution, was carried out on biooxidized and abiotic chalcopyrite surfaces using Raman spectroscopy and SEM-EDS. Our results indicate that oxidized chalcopyrite surfaces initially containing inactive S n 2− and S n 2−/CuS phases were less colonized by A. thiooxidans as compared with surfaces containing active phases (mainly S0). Furthermore, it was observed that cells were partially covered by CuS and S0 phases during biooxidation, especially at highly oxidized chalcopyrite surfaces, suggesting the innocuous effect of CuS phases during A. thiooxidans performance. These results may contribute to understanding the effect of the concomitant formation of refractory secondary phases (as CuS and inactive S n 2−) during the biooxidation of chalcopyrite by sulfur-oxidizing microorganisms in bioleaching systems.






Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Acar S, Brierley JA, Yu Wan R (2005) Conditions for bioleaching a covellite-bearing ore. Hydrometall 77:239–246. doi:10.1016/j.hydromet.2004.05.004
Ahmadi A, Schaffie M, Manafi Z, Ranjbar M (2010) Electrochemical bioleaching of high grade chalcopyrite flotation concentrates in a stirred bioreactor. Hydrometall 104:99–105. doi:10.1016/j.hydromet.2010.05.001
Bevilaqua D, Leite ALLC, García O, Tuovinen OH (2002) Oxidation of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in shake flask. Process Biochem 38:587–594. doi:10.1016/S0032-9592(02)00169-3
Bevilaqua D, Diéz-Perez I, Fugivara CS, Sanz F, Benedetti AV, Garcia O (2004) Oxidative dissolution of chalcopyrite by Acidithiobacillus ferrooxidans analyzed by electrochemical impedance spectroscopy and atomic force microscopy. Bioelectrochem 64:79–84. doi:10.1016/j.bioelechem.2004.01.006
Biegler T, Swift DA (1979) Anodic electrochemistry of chalcopyrite. J Appl Electrochem 9:545–554. doi:10.1007/BF00610940
Busscher HJ, Weerkamp AH, van der Mei HC, van Pelt AW, de Jong HP, Arends J (1984) Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion. Appl Environ Microbiol 48:980–983
Córdoba EM, Muñoz JA, Blázquez ML, González F, Ballester A (2008) Leaching of chalcopyrite with ferric ion. Part IV: The role of redox potential in the presence of mesophilic and thermophilic bacteria. Hydrometall 93:106–115. doi:10.1016/j.hydromet.2007.11.005
Cruz R, Bertrand V, Monroy M, González I (2001) Effect of sulfide impurities on the reactivity of pyrite and pyritic concentrates: a multi-tool approach. Appl Geochem 16:803–819. doi:10.1016/S0883-2927(01)00035-X
Donlan MR (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890. doi:10.3201/eid0809.020063
Dopson M, Lindström EB (1999) Potential role of Thiobacillus caldus in arsenopyrite bioleaching. Appl Environ Microbiol 65:36–40
Eghbalnia M, Dixon DG (2011) Electrochemical study of leached chalcopyrite using solid paraffin-based carbon paste electrodes. Hydrometall 110:1–12. doi:10.1016/j.hydromet.2011.07.009
El Jaroudi O, Picquenard E, Demortier A, Lelieur JP, Corset J (1999) Polysulfide anions. 1. Structure and vibrational spectra of the S 2−2 and S 2−3 anions. Influence of the cations on bond length and angle. Inorg Chem 38:2394–2401. doi:10.1021/ic9811143
El Jaroudi O, Picquenard E, Demotier A, Lelieur JP, Corset J (2000) Polysulfide anions II: structure and vibrational spectra of the S 2−4 and S 2−5 anions. Influence of the cations on bond length, valence and torsion angle. Inorg Chem 39:2593–2603. doi:10.1021/ic991419x
Falco L, Pogliani C, Curutchet G, Donati E (2003) A comparison of bioleaching of covellite using pure cultures of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans or a mixed culture of Leptospirillum ferrooxidans and Acidithiobacillus thiooxidans. Hydrometall 71:31–36. doi:10.1016/S0304-386X(03)00170-1
Gehrke T, Telegdi J, Thierry D, Sand W (1998) Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl Environ Microbiol 64(7):2743–2747
González DM, Lara RH, Alvarado KN, Valdez-Pérez D, Navarro-Contreras HR, Cruz R, García-Meza JV (2012) Evolution of biofilms during the colonization process of pyrite by Acidithiobacillus thiooxidans. Appl Microbiol Biotechnol 93:763–775. doi:10.1007/s00253-011-3465-2
Hackl RP, Dreisinger DB, Peters E, King JA (1995) Passivation of chalcopyrite during oxidative leaching in sulfate media. Hydrometall 39:25–48. doi:10.1016/0304-386X(95)00023-A
Harneit K, Göksel A, Kock D, Klock JH, Gehrke T, Sand W (2006) Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans. Hydrometallurgy 83:245–254. doi:10.1016/j.hydromet.2006.03.044
Javad-Koleini SM, Jafarian M, Abdollahi M, Aghazadhe V (2010) Galvanic leaching of chalcopyrite in atmospheric pressure and sulfate media: kinetic and surface studies. Ind Eng Chem Res 49:5997–6002. doi:10.1021/ie100017u
Klauber C (2008) A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution. Int J Mineral Process 86(1–4):1–17. doi:10.1016/j.minpro.2007.09.003
Kurtzman CP, Baker FL, Smiley MJ (1974) Specimen holder to critical-point dry microorganisms for scanning electron microscopy. Appl Microbiol 28:708–712
Lara RH, Valdez-Pérez D, Rodríguez AG, Navarro-Contreras HR, Cruz R, García-Meza JV (2010) Interfacial insights of pyrite colonized by Acidithiobacillus thiooxidans cells under acidic conditions. Hydrometall 103:35–44. doi:10.1016/j.hydromet.2010.02.014
Lara RH, García-Meza JV, Cruz R, Valdez-Pérez D, González I (2011) Influence of the sulfur species reactivity on biofilm conformation during pyrite colonization by Acidithiobacillus thiooxidans. Appl Microbiol Biotechnol. doi:10.1007/s00253-011-3715-3
Lee MS, Nicol MJ, Basson P (2008) Cathodic processes in the leaching and electrochemistry of covellite in mixed sulfate–chloride media. J Appl Electrochem 38:363–369. doi:10.1007/s10800-007-9447-5
Lei J, Huaiyang Z, Xiaotong P, Zhonghao D (2009) The use of microscopy techniques to analyze microbial biofilms of the biooxidized chalcopyrite surface. Mineral Eng 22:37–42. doi:10.1016/j.mineng.2008.03.012
Liu YG, Zhou M, Zeng GM, Wang X, Li X, Fan T, Xu WH (2008) Bioleaching of heavy metals from mine tailings by indigenous sulfur-oxidizing bacteria: effects of substrate concentration. Bioresource Technol 99:4124–4129. doi:10.1016/j.biortech.2007.08.064
Meléndez AM, Arroyo R, González I (2010) On the reactivity of sulfosalts in cyanide aqueous media: structural, bonding and electronic aspects. ChemPhysChem 11:2879–2886. doi:10.1002/cphc.201000187
Mikhlin YL, Tomashevich YV, Asanov IP, Okotrub AV, Varnek VA, Vyalikh DV (2004) Spectroscopic and electrochemical characterization of the surface layers of chalcopyrite (CuFeS2) reacted in acid solutions. Appl Surf Sci 225:395–409. doi:10.1016/j.apsusc.2003.10.030
Monods RD, O’Toole GA (2009) The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol 17:73–87. doi:10.1016/j.tim.2008.11.001
Mycroft JR, Bancroft GM, McIntyre NS, Lorimer JW, Hill IR (1990) Detection of sulphur and polysulphides on electrochemically oxidized pyrite surfaces by X-ray photoelectron spectroscopy and Raman spectroscopy. J Electroanal Chem 292:139–152. doi:10.1016/0022-0728(90)87332-E
Nava D, González I (2006) Electrochemical characterization of chemical species formed during the electrochemical treatment of chalcopyrite in sulfuric acid. Electrochim Acta 51(25):5295–5303. doi:10.1016/j.electacta.2006.02.005
Nava D, González I, Leinen D, Ramos-Barrado JR (2008) Surface characterization by X-ray photoelectron spectroscopy and cyclic voltammetry of products formed during the potentiostatic reduction of chalcopyrite. Electrochim Acta 53:4889–4899. doi:10.1016/j.electacta.2008.01.088
Olivera-Nappa A, Picioreanu C, Asenjo JA (2010) Non-homogeneous biofilm modeling applied to bioleaching processes. Biotechnol Bioeng 106(4):660–676. doi:10.1002/bit.22731
Parker AJ, Paul RL, Power GP (1981) Electrochemistry of the oxidative leaching of copper from chalcopyrite. J Electroanal Chem 118:305–316
Parker A, Klauber C, Kougianos HR, van Watling BW (2003) An X-ray photoelectron spectroscopy study of the mechanism of oxidative dissolution of chalcopyrite. Hydrometall 71:265–276. doi:10.1016/S0304-386X(03)00165-8
Parker GK, Woods R, Hope GA (2008) Raman investigation of chalcopyrite oxidation. Coll Surf A 318:160–168. doi:10.1016/j.colsurfa.2007.12.030
Pogliani C, Donati E (1999) The role of exopolymers in bioleaching of a non-ferrous metal sulphide. J Ind Microbiol Biotechnol 22(2):88–92
Rodríguez Y, Ballester A, Blázquez ML, González F, Muñoz JA (2003a) New information on the pyrite bioleaching mechanisms at low and high temperature. Hydrometall 71:37–46. doi:10.1016/S0304-386X(03)00172-5
Rodríguez Y, Ballester A, Blázquez ML, González F, Muñoz JA (2003b) New information on the chalcopyrite bioleaching mechanisms at low and high temperature. Hydrometall 71:47–56. doi:10.1016/S0304-386X(03)00173-7
Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63:239–248. doi:10.1007/s00253-003-1448-7
Sand W, Gehrke T, Jozsa P-G, Schippers A (2001) (Bio)chemistry of bacterial leaching—direct vs. indirect bioleaching. Hydrometall 59:159–175. doi:10.1016/S0304-386X(00)00180-8
Sasaki K, Tsunekawa M, Ohtsuka T, Konno H (1998) The role of sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering. Colloid Surface A 133:269–278. doi:10.1016/S0927-7757(97)00200-8
Sasaki K, Nakamuta Y, Hirajima T, Tuovinen OH (2009) Raman characterization of secondary minerals formed during chalcopyrite leaching with Acidithiobacillus ferrooxidans. Hydrometall 95:153–158. doi:10.1016/j.hydromet.2008.05.009
Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65:319–321
Sequeira CAC, Santos DMF (2010) Transient film formation on chalcopyrite in acidic solutions. J Appl Electrochem 40:123–131. doi:10.1007/s10800-009-9988-x
Sharma PK, Das A, Hanumantha RK, Forssberg KSE (2003) Surface characterization of Acidithiobacillus ferrooxidans cells grown under different conditions. Hydrometall 71:285–292. doi:10.1016/S0304-386X(03)00167-1
Smith ME, Finke EH (1972) Critical point drying of soft biological material for the scanning electron microscope. Invest Ophthalmol 11:127–132
Spolaore P, Joulian C, Gouin J, Morin D, d’Hugues P (2011) Relationship between bioleaching performance, bacterial community structure and mineralogy in the bioleaching of a copper concentrate in stirred-tank reactors. Appl Microbiol Biotechnol 89:441–448. doi:10.1007/s00253-010-2888-5
Stanley RN, Lazazzera BA (2004) Environmental signals and regulatory pathways that influence biofilm formation. Mol Microbiol 52:917–924. doi:10.1111/j.1365-2958.2004.04036.x
Stott MB, Watling HR, Franzmann PD, Sutton D (2000) The role of iron-hydroxy precipitates in the passivation of chalcopyrite during bioleaching. Miner Eng 13:1117–1127. doi:10.1016/S0892-6875(00)00095-9
Toniazzo V, Mustin C, Portal JM, Humbert B, Benoit R, Erre R (1999) Elemental sulfur at the pyrite surfaces: speciation and quantification. Appl Surf Sci 143:229–237. doi:10.1016/S0169-4332(98)00918-0
Tshilombo AF, Petersen J, Dixon DG (2002) The influence of applied potentials and temperature on the electrochemical response of chalcopyrite during bacterial leaching. Minerals Eng 15:809–813. doi:10.1016/S0892-6875(02)00122-X
Turcotte RE, Benner AM, Riley J, Li M, Wadsworth E, Bodily DM (1993) Surface analysis of electrochemically oxidized metal sulfides using Raman spectroscopy. J Electroanal Chem 347:195–205. doi:10.1016/0022-0728(93)80088-Y
Xia JL, Yang Y, He H, Liang CL, Zhao XJ, Zheng L, Ma CY, Zhao YD, Nie ZY, Qiu GZ (2010) Investigation of the sulfur speciation during chalcopyrite leaching by moderate thermophile Sulfobacillus thermosulfidooxidans. Int J Mineral Process 94:52–57. doi:10.1016/j.minpro.2009.11.005
Acknowledgments
Financial support for this work comes from the Mexican Council of Science and Technology (CONACyT; project nos. CB-2005-49321 and CB-2008-01-105655). René H. Lara thanks CONACyT for his postdoctoral fellowship. The authors thank Dr. Amauri Pozos and Dr. Hugo R. Navarro-Contreras for access to the CLSM (Basics Sciences Laboratory) and Raman spectroscopy (CIACyT) equipment at UASLP, respectively. The authors also thank Erasmo Mata-Martinez for mineral coupons preparation, Francisco Galindo-Murillo for MPE preparation, Keila N. Alvarado-Estrada for CLSM analysis at UASLP, and Dr. Jesús D. Sepúlveda for the preparation of samples and SEM images of eMCEs covered by biofilms at UAM-Iztapalapa. This work is part of an ongoing collaboration between UJED (CA-UJED-105), UASLP (CA-UASLP-178), and UAM-I (UAM-I-CA-34).
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
(PDF 275 kb)
Rights and permissions
About this article
Cite this article
Lara, R.H., García-Meza, J.V., González, I. et al. Influence of the surface speciation on biofilm attachment to chalcopyrite by Acidithiobacillus thiooxidans . Appl Microbiol Biotechnol 97, 2711–2724 (2013). https://doi.org/10.1007/s00253-012-4099-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00253-012-4099-8


