Skip to main content
Log in

Influence of the surface speciation on biofilm attachment to chalcopyrite by Acidithiobacillus thiooxidans

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Surfaces of massive chalcopyrite (CuFeS2) electrodes were modified by applying variable oxidation potential pulses under growth media in order to induce the formation of different secondary phases (e.g., copper-rich polysulfides, S n 2−; elemental sulfur, S0; and covellite, CuS). The evolution of reactivity (oxidation capacity) of the resulting chalcopyrite surfaces considers a transition from passive or inactive (containing CuS and S n 2−) to active (containing increasing amounts of S0) phases. Modified surfaces were incubated with cells of sulfur-oxidizing bacteria (Acidithiobacillus thiooxidans) for 24 h in a specific culture medium (pH 2). Abiotic control experiments were also performed to compare chemical and biological oxidation. After incubation, the density of cells attached to chalcopyrite surfaces, the structure of the formed biofilm, and their exopolysaccharides and nucleic acids were analyzed by confocal laser scanning microscopy (CLSM) and scanning electron microscopy coupled to dispersive X-ray analysis (SEM-EDS). Additionally, CuS and S n 2−/S0 speciation, as well as secondary phase evolution, was carried out on biooxidized and abiotic chalcopyrite surfaces using Raman spectroscopy and SEM-EDS. Our results indicate that oxidized chalcopyrite surfaces initially containing inactive S n 2− and S n 2−/CuS phases were less colonized by A. thiooxidans as compared with surfaces containing active phases (mainly S0). Furthermore, it was observed that cells were partially covered by CuS and S0 phases during biooxidation, especially at highly oxidized chalcopyrite surfaces, suggesting the innocuous effect of CuS phases during A. thiooxidans performance. These results may contribute to understanding the effect of the concomitant formation of refractory secondary phases (as CuS and inactive S n 2−) during the biooxidation of chalcopyrite by sulfur-oxidizing microorganisms in bioleaching systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Acar S, Brierley JA, Yu Wan R (2005) Conditions for bioleaching a covellite-bearing ore. Hydrometall 77:239–246. doi:10.1016/j.hydromet.2004.05.004

    Article  CAS  Google Scholar 

  • Ahmadi A, Schaffie M, Manafi Z, Ranjbar M (2010) Electrochemical bioleaching of high grade chalcopyrite flotation concentrates in a stirred bioreactor. Hydrometall 104:99–105. doi:10.1016/j.hydromet.2010.05.001

    Article  CAS  Google Scholar 

  • Bevilaqua D, Leite ALLC, García O, Tuovinen OH (2002) Oxidation of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in shake flask. Process Biochem 38:587–594. doi:10.1016/S0032-9592(02)00169-3

    Article  CAS  Google Scholar 

  • Bevilaqua D, Diéz-Perez I, Fugivara CS, Sanz F, Benedetti AV, Garcia O (2004) Oxidative dissolution of chalcopyrite by Acidithiobacillus ferrooxidans analyzed by electrochemical impedance spectroscopy and atomic force microscopy. Bioelectrochem 64:79–84. doi:10.1016/j.bioelechem.2004.01.006

    Article  CAS  Google Scholar 

  • Biegler T, Swift DA (1979) Anodic electrochemistry of chalcopyrite. J Appl Electrochem 9:545–554. doi:10.1007/BF00610940

    Article  CAS  Google Scholar 

  • Busscher HJ, Weerkamp AH, van der Mei HC, van Pelt AW, de Jong HP, Arends J (1984) Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion. Appl Environ Microbiol 48:980–983

    CAS  Google Scholar 

  • Córdoba EM, Muñoz JA, Blázquez ML, González F, Ballester A (2008) Leaching of chalcopyrite with ferric ion. Part IV: The role of redox potential in the presence of mesophilic and thermophilic bacteria. Hydrometall 93:106–115. doi:10.1016/j.hydromet.2007.11.005

    Article  Google Scholar 

  • Cruz R, Bertrand V, Monroy M, González I (2001) Effect of sulfide impurities on the reactivity of pyrite and pyritic concentrates: a multi-tool approach. Appl Geochem 16:803–819. doi:10.1016/S0883-2927(01)00035-X

    Article  CAS  Google Scholar 

  • Donlan MR (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890. doi:10.3201/eid0809.020063

    Article  Google Scholar 

  • Dopson M, Lindström EB (1999) Potential role of Thiobacillus caldus in arsenopyrite bioleaching. Appl Environ Microbiol 65:36–40

    CAS  Google Scholar 

  • Eghbalnia M, Dixon DG (2011) Electrochemical study of leached chalcopyrite using solid paraffin-based carbon paste electrodes. Hydrometall 110:1–12. doi:10.1016/j.hydromet.2011.07.009

    Article  CAS  Google Scholar 

  • El Jaroudi O, Picquenard E, Demortier A, Lelieur JP, Corset J (1999) Polysulfide anions. 1. Structure and vibrational spectra of the S 2−2 and S 2−3 anions. Influence of the cations on bond length and angle. Inorg Chem 38:2394–2401. doi:10.1021/ic9811143

    Article  CAS  Google Scholar 

  • El Jaroudi O, Picquenard E, Demotier A, Lelieur JP, Corset J (2000) Polysulfide anions II: structure and vibrational spectra of the S 2−4 and S 2−5 anions. Influence of the cations on bond length, valence and torsion angle. Inorg Chem 39:2593–2603. doi:10.1021/ic991419x

    Article  Google Scholar 

  • Falco L, Pogliani C, Curutchet G, Donati E (2003) A comparison of bioleaching of covellite using pure cultures of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans or a mixed culture of Leptospirillum ferrooxidans and Acidithiobacillus thiooxidans. Hydrometall 71:31–36. doi:10.1016/S0304-386X(03)00170-1

    Article  CAS  Google Scholar 

  • Gehrke T, Telegdi J, Thierry D, Sand W (1998) Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl Environ Microbiol 64(7):2743–2747

    CAS  Google Scholar 

  • González DM, Lara RH, Alvarado KN, Valdez-Pérez D, Navarro-Contreras HR, Cruz R, García-Meza JV (2012) Evolution of biofilms during the colonization process of pyrite by Acidithiobacillus thiooxidans. Appl Microbiol Biotechnol 93:763–775. doi:10.1007/s00253-011-3465-2

    Article  Google Scholar 

  • Hackl RP, Dreisinger DB, Peters E, King JA (1995) Passivation of chalcopyrite during oxidative leaching in sulfate media. Hydrometall 39:25–48. doi:10.1016/0304-386X(95)00023-A

    Article  CAS  Google Scholar 

  • Harneit K, Göksel A, Kock D, Klock JH, Gehrke T, Sand W (2006) Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans. Hydrometallurgy 83:245–254. doi:10.1016/j.hydromet.2006.03.044

    Article  CAS  Google Scholar 

  • Javad-Koleini SM, Jafarian M, Abdollahi M, Aghazadhe V (2010) Galvanic leaching of chalcopyrite in atmospheric pressure and sulfate media: kinetic and surface studies. Ind Eng Chem Res 49:5997–6002. doi:10.1021/ie100017u

    Article  Google Scholar 

  • Klauber C (2008) A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution. Int J Mineral Process 86(1–4):1–17. doi:10.1016/j.minpro.2007.09.003

    Article  CAS  Google Scholar 

  • Kurtzman CP, Baker FL, Smiley MJ (1974) Specimen holder to critical-point dry microorganisms for scanning electron microscopy. Appl Microbiol 28:708–712

    CAS  Google Scholar 

  • Lara RH, Valdez-Pérez D, Rodríguez AG, Navarro-Contreras HR, Cruz R, García-Meza JV (2010) Interfacial insights of pyrite colonized by Acidithiobacillus thiooxidans cells under acidic conditions. Hydrometall 103:35–44. doi:10.1016/j.hydromet.2010.02.014

    Article  CAS  Google Scholar 

  • Lara RH, García-Meza JV, Cruz R, Valdez-Pérez D, González I (2011) Influence of the sulfur species reactivity on biofilm conformation during pyrite colonization by Acidithiobacillus thiooxidans. Appl Microbiol Biotechnol. doi:10.1007/s00253-011-3715-3

  • Lee MS, Nicol MJ, Basson P (2008) Cathodic processes in the leaching and electrochemistry of covellite in mixed sulfate–chloride media. J Appl Electrochem 38:363–369. doi:10.1007/s10800-007-9447-5

    Article  CAS  Google Scholar 

  • Lei J, Huaiyang Z, Xiaotong P, Zhonghao D (2009) The use of microscopy techniques to analyze microbial biofilms of the biooxidized chalcopyrite surface. Mineral Eng 22:37–42. doi:10.1016/j.mineng.2008.03.012

    Article  CAS  Google Scholar 

  • Liu YG, Zhou M, Zeng GM, Wang X, Li X, Fan T, Xu WH (2008) Bioleaching of heavy metals from mine tailings by indigenous sulfur-oxidizing bacteria: effects of substrate concentration. Bioresource Technol 99:4124–4129. doi:10.1016/j.biortech.2007.08.064

    Article  CAS  Google Scholar 

  • Meléndez AM, Arroyo R, González I (2010) On the reactivity of sulfosalts in cyanide aqueous media: structural, bonding and electronic aspects. ChemPhysChem 11:2879–2886. doi:10.1002/cphc.201000187

    Article  Google Scholar 

  • Mikhlin YL, Tomashevich YV, Asanov IP, Okotrub AV, Varnek VA, Vyalikh DV (2004) Spectroscopic and electrochemical characterization of the surface layers of chalcopyrite (CuFeS2) reacted in acid solutions. Appl Surf Sci 225:395–409. doi:10.1016/j.apsusc.2003.10.030

    Article  CAS  Google Scholar 

  • Monods RD, O’Toole GA (2009) The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol 17:73–87. doi:10.1016/j.tim.2008.11.001

    Article  Google Scholar 

  • Mycroft JR, Bancroft GM, McIntyre NS, Lorimer JW, Hill IR (1990) Detection of sulphur and polysulphides on electrochemically oxidized pyrite surfaces by X-ray photoelectron spectroscopy and Raman spectroscopy. J Electroanal Chem 292:139–152. doi:10.1016/0022-0728(90)87332-E

    Article  CAS  Google Scholar 

  • Nava D, González I (2006) Electrochemical characterization of chemical species formed during the electrochemical treatment of chalcopyrite in sulfuric acid. Electrochim Acta 51(25):5295–5303. doi:10.1016/j.electacta.2006.02.005

    Article  CAS  Google Scholar 

  • Nava D, González I, Leinen D, Ramos-Barrado JR (2008) Surface characterization by X-ray photoelectron spectroscopy and cyclic voltammetry of products formed during the potentiostatic reduction of chalcopyrite. Electrochim Acta 53:4889–4899. doi:10.1016/j.electacta.2008.01.088

    Article  CAS  Google Scholar 

  • Olivera-Nappa A, Picioreanu C, Asenjo JA (2010) Non-homogeneous biofilm modeling applied to bioleaching processes. Biotechnol Bioeng 106(4):660–676. doi:10.1002/bit.22731

    Article  CAS  Google Scholar 

  • Parker AJ, Paul RL, Power GP (1981) Electrochemistry of the oxidative leaching of copper from chalcopyrite. J Electroanal Chem 118:305–316

    Article  CAS  Google Scholar 

  • Parker A, Klauber C, Kougianos HR, van Watling BW (2003) An X-ray photoelectron spectroscopy study of the mechanism of oxidative dissolution of chalcopyrite. Hydrometall 71:265–276. doi:10.1016/S0304-386X(03)00165-8

    Article  CAS  Google Scholar 

  • Parker GK, Woods R, Hope GA (2008) Raman investigation of chalcopyrite oxidation. Coll Surf A 318:160–168. doi:10.1016/j.colsurfa.2007.12.030

    Article  CAS  Google Scholar 

  • Pogliani C, Donati E (1999) The role of exopolymers in bioleaching of a non-ferrous metal sulphide. J Ind Microbiol Biotechnol 22(2):88–92

    Article  CAS  Google Scholar 

  • Rodríguez Y, Ballester A, Blázquez ML, González F, Muñoz JA (2003a) New information on the pyrite bioleaching mechanisms at low and high temperature. Hydrometall 71:37–46. doi:10.1016/S0304-386X(03)00172-5

    Article  Google Scholar 

  • Rodríguez Y, Ballester A, Blázquez ML, González F, Muñoz JA (2003b) New information on the chalcopyrite bioleaching mechanisms at low and high temperature. Hydrometall 71:47–56. doi:10.1016/S0304-386X(03)00173-7

    Article  Google Scholar 

  • Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63:239–248. doi:10.1007/s00253-003-1448-7

    Article  CAS  Google Scholar 

  • Sand W, Gehrke T, Jozsa P-G, Schippers A (2001) (Bio)chemistry of bacterial leaching—direct vs. indirect bioleaching. Hydrometall 59:159–175. doi:10.1016/S0304-386X(00)00180-8

    Article  CAS  Google Scholar 

  • Sasaki K, Tsunekawa M, Ohtsuka T, Konno H (1998) The role of sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering. Colloid Surface A 133:269–278. doi:10.1016/S0927-7757(97)00200-8

    Article  CAS  Google Scholar 

  • Sasaki K, Nakamuta Y, Hirajima T, Tuovinen OH (2009) Raman characterization of secondary minerals formed during chalcopyrite leaching with Acidithiobacillus ferrooxidans. Hydrometall 95:153–158. doi:10.1016/j.hydromet.2008.05.009

    Article  CAS  Google Scholar 

  • Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65:319–321

    CAS  Google Scholar 

  • Sequeira CAC, Santos DMF (2010) Transient film formation on chalcopyrite in acidic solutions. J Appl Electrochem 40:123–131. doi:10.1007/s10800-009-9988-x

    Article  CAS  Google Scholar 

  • Sharma PK, Das A, Hanumantha RK, Forssberg KSE (2003) Surface characterization of Acidithiobacillus ferrooxidans cells grown under different conditions. Hydrometall 71:285–292. doi:10.1016/S0304-386X(03)00167-1

    Article  CAS  Google Scholar 

  • Smith ME, Finke EH (1972) Critical point drying of soft biological material for the scanning electron microscope. Invest Ophthalmol 11:127–132

    CAS  Google Scholar 

  • Spolaore P, Joulian C, Gouin J, Morin D, d’Hugues P (2011) Relationship between bioleaching performance, bacterial community structure and mineralogy in the bioleaching of a copper concentrate in stirred-tank reactors. Appl Microbiol Biotechnol 89:441–448. doi:10.1007/s00253-010-2888-5

    Article  CAS  Google Scholar 

  • Stanley RN, Lazazzera BA (2004) Environmental signals and regulatory pathways that influence biofilm formation. Mol Microbiol 52:917–924. doi:10.1111/j.1365-2958.2004.04036.x

    Article  CAS  Google Scholar 

  • Stott MB, Watling HR, Franzmann PD, Sutton D (2000) The role of iron-hydroxy precipitates in the passivation of chalcopyrite during bioleaching. Miner Eng 13:1117–1127. doi:10.1016/S0892-6875(00)00095-9

    Article  CAS  Google Scholar 

  • Toniazzo V, Mustin C, Portal JM, Humbert B, Benoit R, Erre R (1999) Elemental sulfur at the pyrite surfaces: speciation and quantification. Appl Surf Sci 143:229–237. doi:10.1016/S0169-4332(98)00918-0

    Article  CAS  Google Scholar 

  • Tshilombo AF, Petersen J, Dixon DG (2002) The influence of applied potentials and temperature on the electrochemical response of chalcopyrite during bacterial leaching. Minerals Eng 15:809–813. doi:10.1016/S0892-6875(02)00122-X

    Article  CAS  Google Scholar 

  • Turcotte RE, Benner AM, Riley J, Li M, Wadsworth E, Bodily DM (1993) Surface analysis of electrochemically oxidized metal sulfides using Raman spectroscopy. J Electroanal Chem 347:195–205. doi:10.1016/0022-0728(93)80088-Y

    Article  CAS  Google Scholar 

  • Xia JL, Yang Y, He H, Liang CL, Zhao XJ, Zheng L, Ma CY, Zhao YD, Nie ZY, Qiu GZ (2010) Investigation of the sulfur speciation during chalcopyrite leaching by moderate thermophile Sulfobacillus thermosulfidooxidans. Int J Mineral Process 94:52–57. doi:10.1016/j.minpro.2009.11.005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this work comes from the Mexican Council of Science and Technology (CONACyT; project nos. CB-2005-49321 and CB-2008-01-105655). René H. Lara thanks CONACyT for his postdoctoral fellowship. The authors thank Dr. Amauri Pozos and Dr. Hugo R. Navarro-Contreras for access to the CLSM (Basics Sciences Laboratory) and Raman spectroscopy (CIACyT) equipment at UASLP, respectively. The authors also thank Erasmo Mata-Martinez for mineral coupons preparation, Francisco Galindo-Murillo for MPE preparation, Keila N. Alvarado-Estrada for CLSM analysis at UASLP, and Dr. Jesús D. Sepúlveda for the preparation of samples and SEM images of eMCEs covered by biofilms at UAM-Iztapalapa. This work is part of an ongoing collaboration between UJED (CA-UJED-105), UASLP (CA-UASLP-178), and UAM-I (UAM-I-CA-34).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René H. Lara.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 275 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lara, R.H., García-Meza, J.V., González, I. et al. Influence of the surface speciation on biofilm attachment to chalcopyrite by Acidithiobacillus thiooxidans . Appl Microbiol Biotechnol 97, 2711–2724 (2013). https://doi.org/10.1007/s00253-012-4099-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4099-8

Keywords