Skip to main content

Development of Monascus fermentation technology for high hypolipidemic effect

Abstract

Monascus species has been used as the traditional food fungus in Eastern Asia for several centuries. Monascus-fermented products are gradually developed as the popular functional food for the prevention of cardiovascular disease, but we know that culture condition affects the hypolipidemic effect of Monascus-fermented product. In the past, the cholesterol-lowering agent—monacolin K—is regarded as the most important hypolipidemic agent. Two natural yellow pigments—monascin and ankaflavin—are also proven as novel hypolipidemic agents in recent years. However, the hypolipidemic effect of Monascus-fermented product should contribute from monacolin K, monascin, ankaflavin, and other unknown functional ingredients. In addition to hypolipidemic effect, the safety concern of Monascus-fermented product is involved in the levels of mycotoxin—citrinin. The hypolipidemic effect and the production of these functional metabolites or mycotoxin are influenced by many factors such as the choice of culture substrates, carbon and nitrogen source, pH value, extra nutrients, and so on. Therefore, this review focused on the effect of various culture conditions and nutrients on the functional metabolites production, hypolipidemic effect as well as citrinin concentration, and further organized the fermentation technologies used by previous studies for the promotion of hypolipidemic effect and safety.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Ajdari Z, Ebrahimpour A, Abdul Manan M, Hamid M, Mohamad R, Ariff AB (2011) Nutritional requirements for the improvement of growth and sporulation of several strains of Monascus purpureus on solid state cultivation. J Biomed Biotechnol. doi:10.1155/2011/487329

  • Akihisa T, Tokuda H, Ukiya M, Kiyota A, Yasukawa K, Sakamoto N, Kimura Y, Suzuki T, Takayasu J, Nishino H (2005a) Anti-tumor-initiating effects of monascin, an azaphilonoid pigment from the extract of Monascus pilosus fermented rice (red-mold rice). Chem Biodivers 2:1305–1309

    Article  CAS  Google Scholar 

  • Akihisa T, Tokuda H, Yasukawa K, Ukiya M, Kiyota A, Sakamoto N, Suzuki T, Tanabe N, Nishino H (2005b) Azaphilones, furanoisophthalides, and amino acids from the extracts of Monascus pilosus-fermented rice (red-mold rice) and their chemopreventive effects. J Agric Food Chem 53:562–565

    Article  CAS  Google Scholar 

  • Aniya Y, Yokomakura T, Yonamine M, Shimada K, Nagamine T, Shimabukuro M, Gibo H (1999) Screening of antioxidant action of various molds and protection of Monascus anka against experimentally induced liver injuries of rats. Gen Pharmacol 32:225–231

    Article  CAS  Google Scholar 

  • Blanc PJ, Laussac JP, Le Bars J, Le Bars P, Loret MO, Pareilleux A, Prome D, Prome JC, Santerre AL, Goma G (1995) Characterization of monascidin A from Monascus as citrinin. Int J Food Microbiol 27:201–213

    Article  CAS  Google Scholar 

  • Chagas GM, Campello AP, Kluppel ML (1992) Mechanism of citrinin-induced dysfunction of mitochondria. I. Effects on respiration, enzyme activities and membrane potential of renal cortical mitochondria. J Appl Toxicol 12:123–129

    Article  CAS  Google Scholar 

  • Chagas GM, Kluppel ML, Campello Ade P, Buchi Dde F, de Oliveira MB (1994) Alterations induced by citrinin in cultured kidney cells. Cell Struct Funct 19:103–108

    Article  CAS  Google Scholar 

  • Chagas GM, Campello AP, Kluppel ML, Oliveira BM (1995) Citrinin affects the oxidative metabolism of BHK-21 cells. Cell Biochem Funct 13:267–271

    Article  CAS  Google Scholar 

  • Chang WC, Yu YM, Wu CH, Tseng YH, Wu KY (2005) Reduction of oxidative stress and atherosclerosis in hyperlipidemic rabbits by Dioscorea rhizome. Can J Physiol Pharmacol 83:423–430

    Article  CAS  Google Scholar 

  • Cicero AF, Brancaleoni M, Laghi L, Donati F, Mino M (2005) Antihyperlipidemic effect of a Monascus purpureus brand dietary supplement on a large sample of subjects at low risk for cardiovascular disease: a pilot study. Complement Ther Med 13:273–278

    Article  Google Scholar 

  • Ciegler A, Vesonder RF, Jackson LK (1977) Production and biological activity of patulin and citrinin from Penicillium expansum. Appl Environ Microbiol 33:1004–1006

    CAS  Google Scholar 

  • Endo A (1979) Monacolin K, a new hypocholesterolemic agent produced by Monascus species. J Antibiot 32:852–854

    Article  CAS  Google Scholar 

  • Hajjaj H, Blanc PJ, Groussac E, Goma G, Uribelarrea JL, Loubiere P (1999) Improvement of red pigment/citrinin production ratio as a function of environmental conditions by Monascus ruber. Biotechnol Bioeng 64:497–501

    Article  CAS  Google Scholar 

  • Higashikawa F, Noda M, Awaya T, Ushijima M, Sugiyama M (2012) Reduction of serum lipids by the intake of the extract of garlic fermented with Monascus pilosus: a randomized, double-blind, placebo-controlled clinical trial. Clin Nutr 31:261–266

    Article  CAS  Google Scholar 

  • Hong SY, Oh JH, Lee I (2011) Simultaneous enrichment of deglycosylated ginsenosides and monacolin K in red ginseng by fermentation with Monascus pilosus. Biosci Biotechnol Biochem 75:1490–1495

    Article  CAS  Google Scholar 

  • Hoover R (2001) Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr Polym 45:253–267

    Article  CAS  Google Scholar 

  • Iskra B, Zivko M, Kes P (2005) Rhabdomyolysis as a side effect of simvastatin treatment. Acta Med Croat 59:325–328

    CAS  Google Scholar 

  • Jongrungruangchok S, Kittakoop P, Yongsmith B, Bavovada R, Tanasupawat S, Lartpornmatulee N, Thebtaranonth Y (2004) Azaphilone pigments from a yellow mutant of the fungus Monascus kaoliang. Phytochemistry 65:2569–2575

    Article  CAS  Google Scholar 

  • Juzlova P, Martinkova L, Kren V (1996) Secondary metabolites of the fungus Monascus: a review. J Ind Microbiol 16:163–170

    Article  CAS  Google Scholar 

  • Kitchen DN, Carlton WW, Tuite J (1977) Ochratoxin A and citrinin induced nephrosis in Beagle dogs. I. Clinical and clinicopathological features. Vet Pathol 14:154–172

    Article  CAS  Google Scholar 

  • Konishi K, Saito N, Shoji E, Takeda H, Kato M, Asaka M, Ooi HK (2007) Helicobacter pylori: longer survival in deep ground water and sea water than in a nutrient-rich environment. APMIS 115:1285–1291

    Article  Google Scholar 

  • Krogh P, Hald B, Pedersen EJ (1973) Occurrence of ochratoxin A and citrinin in cereals associated with mycotoxic porcine nephropathy. Acta Pathol Microbiol Scand [B] Microbiol Immunol 81:689–695

    CAS  Google Scholar 

  • Lee CL, Tsai TY, Wang JJ, Pan TM (2006a) In vivo hypolipidemic effects and safety of low dosage Monascus powder in a hamster model of hyperlipidemia. Appl Microbiol Biotechnol 70:533–540

    Article  CAS  Google Scholar 

  • Lee CL, Wang JJ, Kuo SL, Pan TM (2006b) Monascus fermentation of dioscorea for increasing the production of cholesterol-lowering agent—monacolin K and antiinflammation agent—monascin. Appl Microbiol Biotechnol 72:1254–1262

    Article  CAS  Google Scholar 

  • Lee CL, Wang JJ, Pan TM (2006c) Synchronous analysis method for detection of citrinin and the lactone and acid forms of monacolin K in red mold rice. J AOAC Int 89:669–677

    CAS  Google Scholar 

  • Lee CL, Hung HK, Wang JJ, Pan TM (2007a) Improving the ratio of monacolin K to citrinin production of Monascus purpureus NTU 568 under dioscorea medium through the mediation of pH value and ethanol addition. J Agric Food Chem 55:6493–6502

    Article  CAS  Google Scholar 

  • Lee CL, Hung HK, Wang JJ, Pan TM (2007b) Red mold dioscorea has greater hypolipidemic and antiatherosclerotic effect than traditional red mold rice and unfermented dioscorea in hamsters. J Agri Food Chem 55:7162–7169

    Article  CAS  Google Scholar 

  • Lee CL, Kung YH, Wu CL, Hsu YW, Pan TM (2010) Monascin and ankaflavin act as novel hypolipidemic and high-density lipoprotein cholesterol-raising agents in red mold dioscorea. J Agric Food Chem 59:8199–8207

    Article  Google Scholar 

  • Lee CL, Kung YH, Wang JJ, Lung TY, Pan TM (2011) Enhanced hypolipidemic effect and safety of red mold dioscorea cultured in deep ocean water. J Agric Food Chem 59:8199–8207

    Article  CAS  Google Scholar 

  • Lin CC, Li TC, Lai MM (2005) Efficacy and safety of Monascus purpureus Went rice in subjects with hyperlipidemia. Eur J Endocrinol 153:679–686

    Article  CAS  Google Scholar 

  • Liu JY, Yang FL, Lu CP, Yang YL, Wen CL, Hua KF, Wu SH (2008) Polysaccharides from Dioscorea batatas induce tumor necrosis factor-alpha secretion via Toll-like receptor 4-mediated protein kinase signaling pathways. J Agric Food Chem 56:9892–9898

    Article  CAS  Google Scholar 

  • Manzoni M, Bergomi S, Rollin M, Cavazzoni V (1999) Production of statins by filamentous fungi. Biotechnol Lett 21:253–257

    Article  CAS  Google Scholar 

  • Martinkova L, Patakova-Juzlova P, Krent V, Kucerova Z, Havlicek V, Olsovsky P, Hovorka O, Rihova B, Vesely D, Vesela D, Ulrichova J, Prikrylova V (1999) Biological activities of oligoketide pigments of Monascus purpureus. Food Addit Contam 16:15–24

    Article  CAS  Google Scholar 

  • Misaki A, Ito T, Harada T (1972) Constitutional studies on the mucilage of yamanoimo, Dioscorea batatas Decne, forma Tsukune. Isolation and structure of a mannan. Agri Biol Chem 36:761–771

    Article  CAS  Google Scholar 

  • Miyake T, Uchitomi K, Zhang MY, Kono I, Nozaki N, Sammoto H, Inagaki K (2006) Effects of the principal nutrients on lovastatin production by Monascus pilosus. Biosci Biotechnol Biochem 70:1154–1159

    Article  CAS  Google Scholar 

  • Muller HM, Boley A (1992) Cold storage of wheat. 1. Ergosterol, ochratoxin A and citrinin after inoculation with Penicillium verrucosum. Arch Tierernahr 42:351–363

    Article  CAS  Google Scholar 

  • Nagai T, Nagashima T (2006) Functional properties of dioscorin, a soluble viscous protein from Japanese yam (Dioscorea opposita thunb.) tuber mucilage Tororo. Z Naturforsch [C] 61:792–798

    CAS  Google Scholar 

  • Oh PS, Lim KT (2009) Glycoprotein isolated from Dioscorea batatas Decne modulates expressions of IL-4 and IL-10 in primary-cultured mouse lymphocytes. Cell Biochem Funct 27:316–322

    Article  CAS  Google Scholar 

  • Ohizumi Y, Gaidamashvili M, Ohwada S, Matsuda K, Kominami J, Nakamura-Tsuruta S, Hirabayashi J, Naganuma T, Ogawa T, Muramoto K (2009) Mannose-binding lectin from yam (Dioscorea batatas) tubers with insecticidal properties against Helicoverpa armigera (Lepidoptera: Noctuidae). J Agric Food Chem 57:2896–2902

    Article  CAS  Google Scholar 

  • Park JP, Kim SW, Hwang HJ, Yun JW (2001) Optimization of submerged culture conditions for the mycelial growth and exo-biopolymer production by Cordyceps militaris. Lett Appl Microbiol 33:76–81

    Article  CAS  Google Scholar 

  • Phillips RD, Hayes AW, Berndt WO, Williams WL (1980) Effects of citrinin on renal function and structure. Toxicology 16:123–137

    Article  CAS  Google Scholar 

  • Pyo YH, Seong KS (2009) Hypolipidemic effects of Monascus-fermented soybean extracts in rats fed a high-fat and -cholesterol diet. J Agric Food Chem 57:8617–8622

    Article  CAS  Google Scholar 

  • Ramadoss CS, Mukherjee A (1977) In vitro inhibition of bovine liver glutamate dehydrogenase by citrinin, a mycotoxin. J Antibiot (Tokyo) 30:172–174

    Article  CAS  Google Scholar 

  • Ramadoss CS, Shanmugasundaram ER (1973) Effect of citrinin on liver metabolism in rabbits. Indian J Biochem Biophys 10:296–297

    CAS  Google Scholar 

  • Ramadoss CS, Shanmugasundaram ER (1977) The mechanism of action of citrinin on rabbit kidney alkaline phosphatase activity in vivo. J Biochem 81:1825–1831

    CAS  Google Scholar 

  • Sabater-Vilar M, Maas RF, Fink-Gremmels J (1999) Mutagenicity of commercial Monascus fermentation products and the role of citrinin contamination. Mutat Res 444:7–16

    CAS  Google Scholar 

  • Sansing GA, Lillehoj EB, Detroy RW, Miller MA (1976) Synergistic toxic effects of citrinin, ochratoxin A and penicillic acid in mice. Toxicon 14:213–220

    Article  CAS  Google Scholar 

  • Setnikar I, Senin P, Rovati LC (2005) Antiatherosclerotic efficacy of policosanol, red yeast rice extract and astaxanthin in the rabbit. Arzneimittelforschung 55:312–317

    CAS  Google Scholar 

  • Shinohara Y, Arai M, Hirao K, Sugihara S, Nakanishi K (1976) Combination effect of citrinin and other chemicals on rat kidney tumorigenesis. Gann 67:147–155

    CAS  Google Scholar 

  • Smith DJ, Olive KE (2003) Chinese red rice-induced myopathy. South Med J 96:1265–1267

    Article  Google Scholar 

  • Su NW, Lin YL, Lee MH, Ho CY (2005) Ankaflavin from Monascus-fermented red rice exhibits selective cytotoxic effect and induces cell death on Hep G2 cells. J Agric Food Chem 53:1949–1954

    Article  CAS  Google Scholar 

  • Sumioka I, Hayama M, Shimokawa Y, Shiraishi S, Tokunaga A (2006) Lipid-lowering effect of Monascus garlic fermented extract (MGFE) in hyperlipidemic subjects. Hiroshima J Med Sci 55:59–64

    Google Scholar 

  • Sylvain-Moore H, Worden JP Jr (1991) Lovastatin-associated rhabdomyolysis. Heart Lung 20:464–466

    CAS  Google Scholar 

  • Tsukahara M, Shinzato N, Tamaki Y, Namihira T, Matsui T (2009) Red yeast rice fermentation by selected Monascus sp. with deep-red color, lovastatin production but no citrinin, and effect of temperature-shift cultivation on lovastatin production. Appl Biochem Biotechnol 158:476–482

    Article  CAS  Google Scholar 

  • Velmurugan P, Hur H, Balachandar V, Kamala-Kannan S, Lee KJ, Lee SM, Chae JC, Shea PJ, Oh BT (2011) Monascus pigment production by solid-state fermentation with corn cob substrate. J Biosci Bioeng 112:590–594

    Article  CAS  Google Scholar 

  • Wanasundera JP, Ravindran G (1994) Nutritional assessment of yam (Dioscorea alata) tubers. Plant Foods Hum Nutr 46:33–39

    Article  CAS  Google Scholar 

  • Wang IK, Lin-Shiau SY, Chen PC, Lin JK (2000) Hypotriglyceridemic effect of Anka (a fermented rice product of Monascus sp.) in rats. J Agric Food Chem 48:3183–3189

    Article  CAS  Google Scholar 

  • Wang JJ, Lee CL, Pan TM (2003) Improvement of monacolin K, gamma-aminobutyric acid and citrinin production ratio as a function of environmental conditions of Monascus purpureus NTU 601. J Ind Microbiol Biotechnol 30:669–676

    Article  CAS  Google Scholar 

  • Wang WH, Zhang H, Yu YL, Ge Z, Xue C, Zhang P (2004) Intervention of Xuezhikang on patients of acute coronary syndrome with different levels of blood lipids. Zhongguo Zhong Xi Yi Jie He Za Zhi 24:1073–1076

    Google Scholar 

  • Wei W, Li C, Wang Y, Su H, Zhu J, Kritchevsky D (2003) Hypolipidemic and anti-atherogenic effects of long-term cholestin (Monascus purpureus-fermented rice, red yeast rice) in cholesterol fed rabbits. J Nutr Biochem 14:314–318

    Article  CAS  Google Scholar 

  • Yang HT, Lin SH, Huang SY, Chou HJ (2005) Acute administration of red yeast rice (Monascus purpureus) depletes tissue coenzyme Q(10) levels in ICR mice. Br J Nutr 93:131–135

    Article  CAS  Google Scholar 

  • Yoshioka S, Hamada A, Cui T, Yokota J, Yamamoto S, Kusunose M, Miyamura M, Kyotani S, Kaneda R, Tsutsui Y, Odani K, Odani I, Nishioka Y (2003) Pharmacological activity of deep-sea water: examination of hyperlipemia prevention and medical treatment effect. Biol Pharm Bull 26:1552–1559

    Article  CAS  Google Scholar 

  • Yu CC, Lee CL, Pan TM (2006) A novel formulation approach for preparation of nanoparticulate red mold rice. J Agric Food Chem 54:6845–6851

    Article  CAS  Google Scholar 

  • Yu CC, Wang JJ, Lee CL, Lee SH, Pan TM (2008) Safety and mutagenicity evaluation of nanoparticulate red mold rice. J Agric Food Chem 56:11038–11048

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzu-Ming Pan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, CL., Pan, TM. Development of Monascus fermentation technology for high hypolipidemic effect. Appl Microbiol Biotechnol 94, 1449–1459 (2012). https://doi.org/10.1007/s00253-012-4083-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4083-3

Keywords

  • Monascus
  • Monacolin K
  • Monascin
  • Ankaflavin
  • Citrinin
  • Hypolipidemic effect