Skip to main content
Log in

Biosilica structures obtained from Nitzschia, Ditylum, Skeletonema, and Coscinodiscus diatom by a filtration-aided acid cleaning method

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A filtration-aided acid cleaning method was used to collect biosilica structures from a diatom culture medium, natural seawater, or water bloom. Cell extraction, acid cleaning, and acid removal were all performed on a polytetrafluoroethylene (PTFE) filter cloth, significantly improving the treatment capacity and efficiency of the traditional acid wash method. Five typical diatoms were cultivated in the laboratory for acid cleaning. Different growth speeds were introduced, and different process parameters for acid cleaning were utilized. After the acid cleaning, biosilica structures were collected from the frustules of diatoms using different methods. Girdle bands and valves of Coscinodiscus sp. were separated by floating of the valves. Central spines of Ditylum brightwellii and valves of Skeletonema costatum were separately collected by settling or filtration. Rod-like frustules, such as those of Bacillaris paradoxa, are not suitable for large quantities of acid wash. The silica structures were observed and tested using an AFM-calibrated glass needle to determine their elasticity. Elasticity tests showed that ringent girdle bands are more flexible than complete ones (Coscinodiscus sp.) and that both long-chain clusters of Nitzschia palea and central spines of D. brightwellii have certain elasticities. The required pressure for deforming or breaking the biosilica structures of diatoms was also determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Al-Ghouti MA, Khraisheh MAM, Allen SJ, Ahmad MN (2003) The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth. J Environ Manag 69(3):229–238

    Article  CAS  Google Scholar 

  • Bozarth A, Maier U-G, Zauner S (2009) Diatoms in biotechnology: modern tools and applications. Appl Microbiol Biotechnol 82(2):195–201

    Article  CAS  Google Scholar 

  • De Stefano L, Rendina I, De Stefano M, Bismuto A, Maddalena P (2005) Marine diatoms as optical chemical sensors. Appl Phys Lett 87(23):233902–233903

    Article  Google Scholar 

  • De Stefano L, Rea I, Rendina I, De Stefano M, Moretti L (2007) Lensless light focusing with the centric marine diatom Coscinodiscus wailesii. Opt Express 15(26):18082–18088

    Article  Google Scholar 

  • De Stefano L, Rotiroti L, De Stefano M, Lamberti A, Lettieri S, Setaro A, Maddalena P (2009a) Marine diatoms as optical biosensors. Biosens Bioelectron 24(6):1580–1584

    Article  Google Scholar 

  • De Stefano M, De Stefano L, Congestri R (2009b) Functional morphology of micro- and nanostructures in two distinct diatom frustules. Superlattice Microst 46(1–2):64–68

    Article  Google Scholar 

  • Gordon R, Losic D, Tiffany MA, Nagy SS, Sterrenburg FAS (2009) The Glass Menagerie: diatoms for novel applications in nanotechnology. Trends Biotechnol 27(2):116–127

    Article  CAS  Google Scholar 

  • Grégorio C (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97(9):1061–1085

    Article  Google Scholar 

  • Hamm CE, Merkel R, Springer O, Jurkojc P, Maier C, Prechtel K, Smetacek V (2003) Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421(6925):841–843

    Article  CAS  Google Scholar 

  • Ille CG (2007) Biotribology inspires new technologies. Nano Today 2(5):30–37

    Article  Google Scholar 

  • Jeffryes C, Solanki R, Rangineni Y, Wang W, Chang CH, Rorrer GL (2008) Electroluminescence and photoluminescence from nanostructured diatom frustules containing metabolically inserted germanium. Adv Mater 20(null):2633

    Article  CAS  Google Scholar 

  • Jeffryes C, Campbell J, Li H, Jiao J, Rorrer G (2011) The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices. Energy Environ Sci 4(10):3930–3941

    Article  CAS  Google Scholar 

  • Korunic Z, Fields PG, Kovacs MIP, Noll JS, Lukow OM, Demianyk CJ, Shibley KJ (1996) The effect of diatomaceous earth on grain quality. Postharvest Biol Technol 9(3):373–387

    Article  CAS  Google Scholar 

  • Lemons JF (1997) Annual minerals review. Diatomite. Am Ceram Soc Bull 76(6):92–95

    CAS  Google Scholar 

  • Lettieri S, Setaro A, De Stefano L, De Stefano M, Maddalena P (2008) The gas-detection properties of light-emitting diatoms. Adv Funct Mater 18(8):1257–1264

    Article  CAS  Google Scholar 

  • Lin K-C, Kunduru V, Bothara M, Rege K, Prasad S, Ramakrishna BL (2010) Biogenic nanoporous silica-based sensor for enhanced electrochemical detection of cardiovascular biomarkers proteins. Biosens Bioelectron 25(10):2336–2342

    Article  CAS  Google Scholar 

  • Losic D, Rosengarten G, Mitchell JG, Voelcker NH (2006) Pore architecture of diatom frustules: potential nanostructured membranes for molecular and particle separations. J Nanosci Nanotechnol 6(4):982–989

    Article  CAS  Google Scholar 

  • Losic D, Short K, Mitchell JG, Lal R, Voelcker NH (2007) AFM nanoindentations of diatom biosilica surfaces. Langmuir 23(9):5014–5021

    Article  CAS  Google Scholar 

  • Losic D, Mitchell JG, Voelcker NH (2009) Diatomaceous lessons in nanotechnology and advanced materials. Adv Mater 21(29):2947–2958

    Article  CAS  Google Scholar 

  • Nassif N, Livage J (2011) From diatoms to silica-based biohybrids. Chem Soc Rev 40(2):849–859

    Article  CAS  Google Scholar 

  • Qin T, Gutu T, Jiao J, Chang CH, Rorrer GL (2008) Photoluminescence of silica nanostructures from bioreactor culture of marine diatom Nitzschia frustulum. J Nanosci Nanotechnol 8(null):2392

    Article  CAS  Google Scholar 

  • Round FE, Crawford RM, Mann DG (1990) The diatoms: biology and morphology of the genera. Cambridge University Press, Cambridge

    Google Scholar 

  • Sarno D, Kooistra WHCF, Medlin LK, Percopo I, Zingone A (2005) Diversity in the genus Skeletonema (Bacillariophyceae). II. An assessment of the taxonomy of S. costatum-like species with the description of four new species. J Phycol 41(1):151–176

    Article  Google Scholar 

  • Tiffany MA, Hernandez-Becerril DU (2005) Valve development in the diatom family Asterolampraceae H.L Smith 1872. Micropaleontology 51(3):217–258

    Article  Google Scholar 

  • Townley HE, Parker AR, White-Cooper H (2008) Exploitation of diatom frustules for nanotechnology: tethering active biomolecules. Adv Funct Mater 18(null):369–374

    Article  CAS  Google Scholar 

  • Umemura K, Noguchi Y, Ichinose T, Hirose Y, Kuroda R, Mayama S (2008) Diatom cells grown and baked on a functionalized mica surface. J Biol Phys 34(1–2):189–196

    Article  Google Scholar 

  • Wang W, Gutu T, Gale DK, Jiao J, Rorrer GL, C-h C (2009) Self-assembly of nanostructured diatom microshells into patterned arrays assisted by polyelectrolyte multilayer deposition and inkjet printing. J Am Chem Soc 131(12):4178–4179

    Article  CAS  Google Scholar 

  • Wang Y, Pan J, Cai J, Li A, Chen M, Zhang D (2011) Assembling and patterning of diatom frustules onto PDMS substrates using photo-assisted chemical bonding. Chem Lett 40(12):1354–1356

    Article  CAS  Google Scholar 

  • Wang Y, Pan J, Cai J, Zhang D (2012) Floating assembly of diatom Coscinodiscus sp. microshells. Biochem Biophys Res Commun. doi:10.1016/j.bbrc.2012.1002.1080

  • Yang W, Lopez PJ, Rosengarten G (2011) Diatoms: Self assembled silica nanostructures, and templates for bio/chemical sensors and biomimetic membranes. Analyst 136(1):42–53

    Article  CAS  Google Scholar 

  • Zhang DY, Wang Y, Pan JF, Cai J (2010) Separation of diatom valves and girdle bands from Coscinodiscus diatomite by settling method. J Mater Sci 45(21):5736–5741

    Article  CAS  Google Scholar 

  • Zhang DY, Wang Y, Zhang WQ, Pan JF, Cai J (2011) Enlargement of diatom frustules pores by hydrofluoric acid etching at room temperature. J Mater Sci 46(17):5665–5671

    Article  CAS  Google Scholar 

  • Zhang D, Pan J, Cai J, Wang Y, Jiang Y, Jiang X (2012) Hydrofluoric acid-assisted bonding of diatoms with SiO2-based substrates for microsystem application. J Micromech Microeng 22. doi:10.1088/0960-1317/1022/1083/035021

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (no. 50805005, 51075020), the 863 Project of China (no. 2009AA043804), the National Special Fund of Outstanding Doctoral Dissertation of China (no. 2007B32), and the Doctoral Candidate Academic Newcomer Award of Beihang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyuan Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1140 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Zhang, D., Cai, J. et al. Biosilica structures obtained from Nitzschia, Ditylum, Skeletonema, and Coscinodiscus diatom by a filtration-aided acid cleaning method. Appl Microbiol Biotechnol 95, 1165–1178 (2012). https://doi.org/10.1007/s00253-012-4080-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4080-6

Keywords

Navigation