Skip to main content
Log in

Changes in tyrosinase specificity by ionic liquids and sodium dodecyl sulfate

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Tyrosinase is a member of the type 3 copper enzyme family involved in the production of melanin in a wide range of organisms. The ability of tyrosinases to convert monophenols into diphenols has stimulated studies regarding the production of substituted catechols, important intermediates for the synthesis of pharmaceuticals, agrochemicals, polymerization inhibitors, and antioxidants. Despite its enormous potential, the use of tyrosinases for catechol synthesis has been limited due to the low monophenolase/diphenolase activity ratio. In the presence of two water miscible ionic liquids, [BMIM][BF4] and ethylammonium nitrate, the selectivity of a tyrosinase from Bacillus megaterium (TyrBm) was altered, and the ratio of monophenolase/diphenolase activity increased by up to 5-fold. Furthermore, the addition of sodium dodecyl sulphate (SDS) at levels of 2–50 mM increased the activity of TyrBm by 2-fold towards the natural substrates l-tyrosine and l-Dopa and 15- to 20-fold towards the non-native phenol and catechol. The R209H tyrosinase variant we previously identified as having a preferential ratio of monophenolase/diphenolase activity was shown to have a 45-fold increase in activity towards phenol in the presence of SDS. We propose that the effect of SDS on the ability of tyrosinase to convert non-natural substrates is due to the interaction of surfactant molecules with residues located at the entrance to the active site, as visualized by the newly determined crystal structure of TyrBm in the presence of SDS. The effect of SDS on R209 may enable less polar substrates such as phenol and catechol, to penetrate more efficiently into the enzyme catalytic pocket.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr Sect D Biol Crystallogr 66: 213–221.

    Article  Google Scholar 

  • Brünger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr Sect D Biol Crystallogr 54: 905–921.

    Article  Google Scholar 

  • Burton SG (2003) Oxidizing enzymes as biocatalysts. Trends Biotechnol 21: 543–549.

    Article  CAS  Google Scholar 

  • Claus H, Decker H (2006) Bacterial tyrosinases. Syst Appl Microbiol 29: 3–14.

    Article  CAS  Google Scholar 

  • Cong Y, Zhang Q, Woolford D, Schweikardt T, Khant H, Dougherty M, Ludtke SJ, Chiu W, Decker H (2009) Structural mechanism of SDS-induced enzyme activity of scorpion hemocyanin revealed by electron cryomicroscopy. Structure 17: 749–758.

    Article  CAS  Google Scholar 

  • Decker H, Tuczek F (2000) Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism. Trends Biochem Sci 25: 392–397.

    Article  CAS  Google Scholar 

  • Decker H, Schweikardt T, Nillius D, Salzbrunn U, Jaenicke E, Tuczek F (2007) Similar enzyme activation and catalysis in hemocyanins and tyrosinases. Gene 398: 183–191.

    Article  CAS  Google Scholar 

  • Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr Sect D Biol Crystallogr 60: 2126–2132.

    Article  Google Scholar 

  • Gandia-Herrero F, Jimenez-Atienzar M, Cabanes J, Garcia-Carmona F, Escribano J (2005) Differential activation of a latent polyphenol oxidase mediated by sodium dodecyl sulfate. J Agric Food Chem 53: 6825–6830.

    Article  CAS  Google Scholar 

  • Halaouli S, Asther M, Sigoillot JC, Hamdi M, Lomascolo. A (2006) Fungal tyrosinases: new prospects in molecular characteristics, bioengineering and biotechnological applications. J Appl Microbiol 100: 219–232.

    Article  CAS  Google Scholar 

  • Hernandez-Romero D, Sanchez-Amat A, Solano F (2006) A tyrosinase with an abnormally high tyrosine hydroxylase/dopa oxidase ratio. FEBS J 273: 257–270.

    Article  CAS  Google Scholar 

  • Itoh S, Fukuzumi S (2007) Monooxygenase activity of type 3 copper proteins. Acc Chem Res 40: 592–600.

    Article  CAS  Google Scholar 

  • Karbassi F, Haghbeen K, Saboury AA, Rezaei-Tavirani M, Ranjbar B (2004) Calorimetric, spectrophotometric and circular dichroism studies on the impact of sodium dodecyl sulfate on the mushroom tyrosinase structure. Biologia 59: 319–326.

    CAS  Google Scholar 

  • Kawamura-Konishi Y, Tsuji M, Hatana S, Asanuma M, Kakuta D, Kawano T, Mukouyama EB, Goto H, Suzuki H (2007) Purification, characterization, and molecular cloning of tyrosinase from Pholiota nameko. Biosci, Biotechnol, Biochem 71: 1752–1760.

    Article  CAS  Google Scholar 

  • Klabunde T, Eicken C, Sacchettini JC, Krebs B (1998) Crystal structure of plant catechol oxidase containing a dicopper center. Nat Struct Biol 5: 1084–1090.

    Article  CAS  Google Scholar 

  • Leslie AGW (1992) Joint CCP4 + ESF-EAMCB Newsletter on protein crystallography: No. 26.

  • Lopez-Serrano D, Sanchez-Amat A, Solano F (2002) Cloning and molecular characterization of a SDS-activated tyrosinase from Marinomonas mediterranea. Pigment Cell Res 15: 104–111.

    Article  CAS  Google Scholar 

  • Martinez MV, Whitaker JR (1995) The biochemistry and control of enzymatic browning. Trends Food Sci Technol 6: 195–200.

    Article  CAS  Google Scholar 

  • McCoy AJ (2007) Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr Sect D Biol Crystallogr 63: 32–41.

    Article  Google Scholar 

  • Moore BM, Flurkey WH (1990) Sodium dodecyl sulfate activation of a plant polyphenoloxidase. Effect of sodium dodecyl sulfate on enzymatic and physical characteristics of purified broad bean polyphenoloxidase. J Biol Chem 265: 4982–4988.

    CAS  Google Scholar 

  • Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr Sect D Biol Crystallogr 53: 240–255.

    Article  CAS  Google Scholar 

  • Neeley E, Fritch G, Fuller A, Wolfe J, Wright J, Flurkey W (2009) Variations in IC50 values with purity of mushroom tyrosinase. Int J Mol Sci 10: 3811–3823.

    Article  CAS  Google Scholar 

  • Nillius D, Jaenicke E, Decker H (2008) Switch between tyrosinase and catecholoxidase activity of scorpion hemocyanin by allosteric effectors. FEBS Lett 582: 749–754.

    Article  CAS  Google Scholar 

  • Nolan LC, O'Connor KE (2007) Use of Pseudomonas mendocina, or recombinant Escherichia coli cells expressing toluene-4-monooxygenase, and a cell-free tyrosinase for the synthesis of 4-fluorocatechol from fluorobenzene. Biotechnol Lett 29: 1045–1050.

    Article  CAS  Google Scholar 

  • Olivares C, Solano F (2009) New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins. Pigm Cell Melanoma R 22: 750–760.

    Article  CAS  Google Scholar 

  • Olivares C, Garcia-Borron JC, Solano F (2002) Identification of active site residues involved in metal cofactor binding and stereospecific substrate recognition in mammalian tyrosinase. Implications to the catalytic cycle. Biochemistry 41: 679–686.

    Article  CAS  Google Scholar 

  • Rodriguez-Lopez JN, Escribano J, Garciacanovas F (1994) A continuous spectrophotometric method for the determination of monophenolase activity of tyrosinase using 3-methyl-2-benzothiazolinone hydrazone. Anal Biochem 216: 205–212.

    Article  CAS  Google Scholar 

  • Saeidian S, Keyhani E, Keyhani J (2007) Effect of ionic detergents, nonionic detergents, and chaotropic agents on polyphenol oxidase activity from dormant saffron (Crocus stivus L.) corms. J Agric Food Chem 55: 3713–3719.

    Article  CAS  Google Scholar 

  • Selinheimo E, NiEidhin D, Steffensen C, Nielsen J, Lomascolo A, Halaouli S, Record E, O'Beirne D, Buchert J, Kruus K (2007) Comparison of the characteristics of fungal and plant tyrosinases. J Biotechnol 130: 471–480.

    Article  CAS  Google Scholar 

  • Sendovski M, Kanteev M, Shuster V, Adir N, Fishman A (2010) Primary x-ray crystallographic analysis of a bacterial tyrosinase from Bacillus megaterium. Acta Crystallogr Sect F Struct Biol Crystallogr 66: 1101–1103.

    Article  Google Scholar 

  • Sendovski M, Kanteev M, Shuster Ben-Yosef V, Adir N, Fishman A (2011) First structures of an active bacterial tyrosinase reveal copper plasticity. J Mol Biol 405: 227–237.

    Article  CAS  Google Scholar 

  • Shuster Ben-Yosef V, Sendovski M, Fishman A (2010) Directed evolution of tyrosinase for enhanced monophenolase/diphenolase activity ratio. Enzyme Microb Technol 47: 372–376.

    Article  CAS  Google Scholar 

  • Shuster V, Fishman A (2009) Isolation, cloning and characterization of a tyrosinase with improved activity in organic solvents from Bacillus megaterium. J Mol Microbiol Biotechnol 17: 188–200.

    Article  CAS  Google Scholar 

  • Skubak P, Murshudov GN, Pannu NS (2004) Direct incorporation of experimental phase information in model refinement. Acta Crystallogr Sect F Struct Biol Crystallogr 60: 2196–2201.

    Article  Google Scholar 

  • van Holde KE, Miller KI, Decker H (2001) Hemocyanins and invertebrate evolution. J Biol Chem 276: 15563–15566.

    Article  Google Scholar 

  • Wang G, Aazaz A, Peng Z, Shen P (2000) Cloning and overexpression of a tyrosinase gene mel from Pseudomonas maltophila. FEMS Microbiol Lett 185: 23–27.

    Article  CAS  Google Scholar 

  • Xiang J, Fan J-B, Chen N, Chen J, Liang Y (2006) Interaction of cellulase with sodium dodecyl sulfate at critical micelle concentration level. Colloids Surf B Biointerfaces 49: 175–180.

    Article  CAS  Google Scholar 

  • Yang Z (2009) Hofmeister effects: an explanation for the impact of ionic liquids on biocatalysis. J Biotechnol 144: 12–22.

    Article  CAS  Google Scholar 

  • Yang Z, Pan W (2005) Ionic liquids: green solvents for nonaqueous biocatalysis. Enzyme Microb Technol 37: 19–28.

    Article  CAS  Google Scholar 

  • Yang Z, Yue YJ, Xing M (2008) Tyrosinase activity in ionic liquids. Biotechnol Lett 30: 153–158.

    Article  CAS  Google Scholar 

  • Yang Z, Yue YJ, Huang WC, Zhuang XM, Chen ZT, Xing M (2009) Importance of the ionic nature of ionic liquids in affecting enzyme performance. J Biochem (Tokyo) 145: 355–364.

    Article  CAS  Google Scholar 

  • Zhou J, Shi P, Zhang R, Huang H, Meng K, Yang P, Yao B (2011) Symbiotic Streptomyces sp. TN119 GH 11 xylanase: a new pH-stable, protease- and SDS-resistant xylanase. J Ind Microbiol Biotechnol 38: 523–530.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Israel Science Foundation founded by the Israel Academy of Sciences and Humanities, grant number 193/11. We gratefully thank the staff of the ESRF (beamline ID23-1) for provision of synchrotron radiation facilities and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayelet Fishman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldfeder, M., Egozy, M., Shuster Ben-Yosef, V. et al. Changes in tyrosinase specificity by ionic liquids and sodium dodecyl sulfate. Appl Microbiol Biotechnol 97, 1953–1961 (2013). https://doi.org/10.1007/s00253-012-4050-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4050-z

Keywords

Navigation