Skip to main content

Iodine from bacterial iodide oxidization by Roseovarius spp. inhibits the growth of other bacteria

Abstract

Microbial activities in brine, seawater, or estuarine mud are involved in iodine cycle. To investigate the effects of the microbiologically induced iodine on other bacteria in the environment, a total of 13 bacteria that potentially participated in the iodide-oxidizing process were isolated from water or biofilm at a location containing 131 μg ml−1 iodide. Three distinct strains were further identified as Roseovarius spp. based on 16 S rRNA gene sequences after being distinguished by restriction fragment length polymorphism analysis. Morphological characteristics of these three Roseovarius spp. varied considerably across and within strains. Iodine production increased with Roseovarius spp. growth when cultured in Marine Broth with 200 μg ml−1 iodide (I). When 106 CFU/ml Escherichia coli, Pseudomonas aeruginosa, and Bacillus pumilus were exposed to various concentrations of molecular iodine (I2), the minimum inhibitory concentrations (MICs) were 0.5, 1.0, and 1.0 μg ml−1, respectively. However, fivefold increases in the MICs for Roseovarius spp. were obtained. In co-cultured Roseovarius sp. IOB-7 and E. coli in Marine Broth containing iodide (I), the molecular iodine concentration was estimated to be 0.76 μg ml−1 after 24 h and less than 50 % of E. coli was viable compared to that co-cultured without iodide. The growth inhibition of E. coli was also observed in co-cultures with the two other Roseovarius spp. strains when the molecular iodine concentration was assumed to be 0.52 μg ml−1.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Amachi S (2008) Microbial contribution to global iodine cycling: volatilization, accumulation, reduction, oxidation, and sorption of iodine. Microbes Environ 23(4):269–276

    Article  Google Scholar 

  • Amachi S, Kamagata Y, Kanagawa T, Muramatsu Y (2001) Bacteria mediate methylation of iodine in marine and terrestrial environments. Appl Environ Microbiol 67:2718–2722

    Article  CAS  Google Scholar 

  • Amachi S, Muramatsu Y, Akiyama Y, Miyazaki K, Yoshiki S, Hanada S, Kamagata Y, Ban-nai T, Shinoyama H, Fujii T (2005a) Isolation of iodide-oxidizing bacteria from iodide-rich natural gas brines and seawaters. Microb Ecol 49:547–557

    Article  CAS  Google Scholar 

  • Amachi S, Mishima Y, Shinoyama H, Muramatsu Y, Fujii T (2005b) Active transport and accumulation of iodide by newly isolated marine bacteria. Appl Environ Microbiol 71(2):741–745

    Article  CAS  Google Scholar 

  • Andrews JM (2011) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48(S1):5–16

    Article  CAS  Google Scholar 

  • Austin B (1988) Marine microbiology. University of Cambridge, Cambridge, pp 37–38

    Google Scholar 

  • Barrow GM (1996) Physical chemistry, 6th edn. McGraw Hill, New York., p. 878

    Google Scholar 

  • Belliot G, Amandine L, Souihel D, Agnello D, Pothier P (2008) Use of murine norovirus as a surrogate to evaluate resistance of human norovirus to disinfectants. Appl Environ Microbiol 74(10):3315–3318

    Article  CAS  Google Scholar 

  • Ellis KV, Van Vree HBRJ (1989) Iodine used as a water disinfectant in turbid waters. Water Res 23(6):671–676

    Article  CAS  Google Scholar 

  • Freney J, Husson MO, Gavini F, Madier S, Martra A, Izard D, Leclerc H, Fleurette J (1988) Susceptibilities to antibiotics and antiseptics of new species of the family Enterobacteriaceae. Antimicrob Agents Chemother 32(6):873–876

    Article  CAS  Google Scholar 

  • Fuse H, Takimura O, Yamaoka Y (1989) Effects of iodide and iodate on marine phytoplankton. In: Okaichi T, Anderson DM, Nemoto T (eds) Red tide biology, environmental science, and toxicology. Elsevier, New York, pp 229–232

    Google Scholar 

  • Fuse H, Inoue H, Murakami K, Takimura O, Yamaoka Y (2003) Production of free and organic iodine by Roseovarius spp. FEMS Microbiol Lett 229:189–184

    Article  CAS  Google Scholar 

  • Fweja LWT, Lewis MJ, Grandison AS (2008) Challenge testing the lactoperoxidase system against a range of bacteria using different activation agents. J Dairy Sci 91:2566–2574

    Article  CAS  Google Scholar 

  • Gottardi W (1999) Iodine and disinfection: theoretical study on mode of action, efficiency, stability, and analytical aspects in the aqueous system. Arch Pharm Pharm Med Chem 332:151–157

    Article  CAS  Google Scholar 

  • Gottardi W (2001) Iodine and iodine compounds. In: Disinfection, sterilization, and preservation, 5th ed. Lippincott Williams & Wilkins, Philadelphia. pp 159–182

  • Gozlan RS (1968) Isolation of iodine-producing bacteria from aquaria. Antonie Van Leeuwenhoek 34:226

    Article  CAS  Google Scholar 

  • Gozlan RS, Margalith P (1973) Iodide oxidation by a marine bacterium. J Appl Microbiol 36(3):407–417

    Article  CAS  Google Scholar 

  • Gozlan RS, Margalith P (1974) Iodide oxidation by Pseudomonas iodooxidans. J Appl Bacteriol 37:493–499

    Article  CAS  Google Scholar 

  • Hickey J, Panicucci R, Duan Y, Dinehart K, Murphy J, Kessler J, Gottardi W (1997) Control of the amount of free molecular iodine in iodine germicides. J Pharm Pharmacol 49:1195–1199

    Article  CAS  Google Scholar 

  • Hosoya T, Kondo Y, Ui N (1962) Peroxidase activity in thyroid gland and partial purification of the enzyme. J Biochem 52:180–189

    CAS  Google Scholar 

  • Ihalin R, Loimaranta V, Lenander-Lumikari M, Tenovuo J (1998) The effects of different (pseudo)halide substrates on peroxidase-mediated killing of Actinobacillus actinomycetemcomitans. J Periodontal Res 33(7):421–427

    Article  CAS  Google Scholar 

  • Kuang Y, Jia HY, Miyanaga K, Tanji Y (2009) Effect of milk on antibacterial activity of tetracycline against Escherichia coli and Staphylococcus aureus isolated from bovine mastitis. Appl Microbiol Biotechnol 84:135–142

    Article  CAS  Google Scholar 

  • Kunisue S, Mita I, Waki F (2002) Relationship between subsurface geology and productivity of natural gas and iodine in the Mobara gas field, Boso Peninsula, central Japan. J Jpn Assoc Pet Technol 67(1):83–96

    CAS  Google Scholar 

  • Küpper FC, Schweigert N, Gall EA, Legendre JM, Vilter H, Kloareg B (1998) Iodine uptake in Laminariales involves extracellular, haloperoxidase-mediated oxidation of iodide. Planta 207:163–171

    Article  Google Scholar 

  • Küpper FC, Kloareg B, Guern J, Potin P (2001) Oligoguluronates elicit an oxidative burst in the brown algal kelp Laminaria digitata. Plant Physiol 125:278–291

    Article  Google Scholar 

  • Küpper FC, Carpenter LJ, McFiggans GB, Palmere CJ, Waite TJ, Boneberg EM, Woitsch S, Weiller M, Abela R, Grolimund D, Potin P, Butler A, Luther GW III, Kroneck PMH, Meyer-Klaucke W, Feiters MC (2008) Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry. Proc Natl Acad Sci U S A 105(19):6954–6958

    Article  Google Scholar 

  • Labrenz M, Collins MD, Lawson PA, Tindall BJ, Schumann P, Hirsch P (1999) Roseovarius tolerans gen. nov., sp. nov., a budding bacterium with variable bacteriochlorophll a production from hypersaline Ekho Lake. Int J Syst Bacteriol 49:137–147

    Article  CAS  Google Scholar 

  • Lai Q, Zhong H, Wang J, Yuan J, Sun F, Wang L, Zheng T, Shao Z (2010) Roseovarius indicus sp. nov., isolated 1 from deep sea water of Indian Ocean. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.023168-0

  • Li HP, Brinkmeyer R, Jones WL, Zhang S, Xu C, Schwehr KA, Santschi PH, Kaplan DI, Yeager CM (2011) Iodide accumulation by aerobic bacteria isolated from subsurface sediments of a 129I-contaminated aquifer at Savannah River site, South Carolina. Appl Environ Microbiol 77:2153–2160

    Article  CAS  Google Scholar 

  • Lim CP, Zhao D, Takase Y, Miyanaga K, Watanabe T, Tomoe Y, Tanji Y (2011) Increased bioclogging and corrosion risk by sulfate addition during iodine recovery at a natural gas production plant. Appl Microbiol Biotechnol 89(3):825–834

    Article  CAS  Google Scholar 

  • Murray JW (2000) The oceans. In: Jacobson MC, Charlson RJ, Rodhe H, Orians GH (eds) Earth system science. Academic, London, pp 230–273

    Google Scholar 

  • Nair AJ (2005) Comprehensive biotechnology—XII. Laxmi, New Delhi, pp 143–144

    Google Scholar 

  • Oda M, Morita M, Unno H, Tanji Y (2004) Rapid detection of Escherichia coli O157:H7 by using green fluorescent protein-labeled PP01 bacteriophage. Appl Environ Microbiol 70:527–534

    Article  CAS  Google Scholar 

  • Renirie R, Dewilde A, Pierlot C, Wever R, Hober D, Aubry J-M (2008) Bactericidal and virucidal activity of the alkalophilic P395D/L241V/T343A mutant of vanadium chloroperoxidase. J Appl Microbiol 105(1):264–270

    Article  CAS  Google Scholar 

  • Saiz-Lopez A, BoxeCS (2008) A mechanism for biologically-induced iodine emissions from sea-ice. Atoms Chem Phys Discuss 8:2953–2976

    Article  Google Scholar 

  • Sauerbrei A, Wutzler P (2010) Virucidal efficacy of povidone-iodine-containing disinfectants. Lett Appl Microbiol 51:158–163

    CAS  Google Scholar 

  • Selvaraju BS, Khan IUH, Yadav JS (2005) Biocidal activity of formaldehyde and nonformaldehyde biocides toward Mycobacterium immunogenum and Pseudomonas fluorescens in pure and mixed suspensions in synthetic metalworking fluid and saline. Appl Environ Microbiol 71:542–546

    Article  CAS  Google Scholar 

  • Simidu U, Lee WJ, Kogure K (1983) Comparison of different techniques for determining plates counts of marine bacteria. Bull Jpn Soc Sci Fish 49:199–203

    Article  Google Scholar 

  • Whitehead DC (1984) The distribution and transformations of iodine in the environment. Environ Int 10:321–339

    Article  CAS  Google Scholar 

  • Xu F (1996) Catalysis of novel enzymatic iodide oxidation by fungal laccase. Appl Biochem Biotechnol 59(3):221–230

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Japan Oil, Gas and Metals National Corporation for financial support for this research and to Mr. Jun Koki from the Centre for Advanced Materials, Tokyo Institute of Technology for technical support with the SEM imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunori Tanji.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhao, D., Lim, CP., Miyanaga, K. et al. Iodine from bacterial iodide oxidization by Roseovarius spp. inhibits the growth of other bacteria. Appl Microbiol Biotechnol 97, 2173–2182 (2013). https://doi.org/10.1007/s00253-012-4043-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4043-y

Keywords

  • Iodide-oxidizing process
  • Molecular iodine
  • Roseovarius spp.
  • Minimum inhibitory concentration
  • Growth inhibition