Advertisement

Applied Microbiology and Biotechnology

, Volume 97, Issue 3, pp 1161–1173 | Cite as

Carboxylesterase 2 production and characterization in human cells: new insights into enzyme oligomerization and activity

  • Joana Lamego
  • Bárbara Cunha
  • Cristina Peixoto
  • Marcos F. Sousa
  • Paula M. Alves
  • Ana L. Simplício
  • Ana S. Coroadinha
Biotechnologically relevant enzymes and proteins

Abstract

Carboxylesterase 2 (CES2), the main carboxylesterase expressed in human intestine, is an increasingly important enzyme in anti-cancer combined therapies for the treatment of different pathologies like colon adenocarcinoma and malignant glioma. The production of human recombinant CES2, in human embryonic kidney cells (HEK-293T cells) using serum-free media, is herein described. CES2 secretion to the media was achieved by the simple addition of an in-frame C-terminal 10× histidine tag (CES2-10xHis) without the need of addition of extra N-terminal signalling sequences or the mutation or deletion of the C-terminal HTEL motif responsible for retaining the protein in the lumen of endoplasmic reticulum. This secretion allowed a fourfold increase in CES2 production. The characterization of human recombinant CES2 showed that this protein exists in other active and inactive forms than the described 60 kDa monomer.

Keywords

Carboxylesterases Human cells Protein expression Enzyme characterization 

Notes

Acknowledgments

This work was funded by Fundação para a Ciência e Tecnologia, Portugal (SFRH/BD/44025/2008, PTDC/EBB-BIO/111530/2009, PEst-OE/EQB/LA0004/2011). The authors wish to thank Dr. C. Frazão, Dr. T. M. Bandeiras and Dr. P. M. Matias for the fruitful discussions, and Dr. Júlia Costa from ITQB, Oeiras for the expertise in glycosylation.

References

  1. Beaufay H, Amar-Costesec A, Feytmans E, Thinès-Sempoux D, Wibo M, Robbi M, Berthet J (1974) Analytical study of microsomes and isolated subcellular membranes from rat liver. I Biochemical methods. J Cell Biol 61:188–200CrossRefGoogle Scholar
  2. Bencharit S, Morton CL, Xue Y, Potter PM, Redinbo MR (2003) Structural basis of heroin and cocaine metabolism by a promiscuous human drug-processing enzyme. Nat Struct Biol 10:349–356CrossRefGoogle Scholar
  3. Bornhorst JA, Falke JJ (2003) Purification of proteins using polyhistidine affinity tags. Methods Enzymol 326:245–254CrossRefGoogle Scholar
  4. Crow JA, Borazjani A, Potter PM, Ross MK (2007) Hydrolysis of pyrethroids by human and rat tissues: examination of intestinal, liver and serum carboxylesterases. Toxicol Appl Pharmacol 221:1–12CrossRefGoogle Scholar
  5. Fleming CD, Bencharit S, Edwards CC, Hyatt JL, Tsurkan L, Bai F, Fraga C, Morton CL, Howard-Williams EL, Potter PM, Redinbo MR (2005) Structural insights into drug processing by human carboxylesterase 1: tamoxifen, mevastatin, and inhibition by benzyl. J Mol Biol 352:165–177CrossRefGoogle Scholar
  6. Hatfield MJ, Tsurkan L, Hyatt JL, Yu X, Edwards CC, Hicks LD, Wadkins RM, Potter PM (2010) Biochemical and molecular analysis of carboxylesterase-mediated hydrolysis of cocaine and heroin. Br J Pharmacol 160:1916–1928CrossRefGoogle Scholar
  7. Hermann M, Kietzmann MU, Ivancic M, Zenzmaier C, Luiten RG, Skranc W, Wubbolts M, Winkler M, Birner-Gruenberger R, Pichler H, Schwab H (2008) Alternative pig liver esterase (APLE)—cloning, identification and functional expression in Pichia pastoris of a versatile new biocatalyst. J Biotechnol 133:301–310CrossRefGoogle Scholar
  8. Hicks LD, Hyatt JL, Stoddard S, Tsurkan L, Edwards CC, Wadkins RM, Potter PM (2009) Improved, selective, human intestinal carboxylesterase inhibitors designed to modulate 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin (Irinotecan; CPT-11). J Med Chem 52:3742–3752CrossRefGoogle Scholar
  9. Holmes RS, Cox LA, VandeBerg JL (2009) Horse carboxylesterases: evidence of six CES1 and four families of CES genes on chromosome 3. Comp Biochem Physiol Part D Genomics Proteomics 4:54–65CrossRefGoogle Scholar
  10. Holmes RS, Wright MW, Laulederkind SJ, Cox LA, Hosokawa M, Imai T, Ishibashi S, Lehner R, Miyazaki M, Perkins EJ, Potter PM, Redinbo MR, Robert J, Satoh T, Yamashita T, Yan B, Yokoi T, Zechner R, Maltais LJ (2010) Recommended nomenclature for five mammalian carboxylesterase gene families: human, mouse and rate genes and proteins. Mamm Genome 21:427–441CrossRefGoogle Scholar
  11. Humerickhouse R, Lohrbach K, Li L, Bosron WF, Dolan ME (2000) Characterization of CPT-11 hydrolysis by human liver carboxylesterase isoforms hCE-1 and hCE-2. Cancer Res 60:1189–1192Google Scholar
  12. Junge F, Schneider B, Reckel S, Schwarz D, Dötsch V, Bernhard F (2008) Large-scale production of functional membrane proteins. Cell Mol Life Sci 65:1729–1755CrossRefGoogle Scholar
  13. Lamego J, Coroadinha AS, Simplício AS (2011) Detection and quantification of carboxylesterase 2 activity by capillary electrophoresis. Anal Chem 83:881–887CrossRefGoogle Scholar
  14. Lange S, Musidlowska A, Schmidt-Dannert C, Schmitt J, Bornscheuer UT (2001) Cloning, functional expression, and characterization of recombinant pig liver esterase. Chembiochem 2:576–582CrossRefGoogle Scholar
  15. Li B, Sedlacek M, Manoharan I, Boopathy R, Duysen EG, Masson P, Lockridge O (2005) Butyrylcholinesterase, paraoxonase, and albumin esterase, but not carboxylesterase, are present in human plasma. Biochem Pharmacol 70:1673–1684CrossRefGoogle Scholar
  16. Liederer BM, Borchardt RT (2006) Enzymes involved in the bioconversion of ester-based prodrugs. J Pharm Sci 95:1177–1195CrossRefGoogle Scholar
  17. Morgan EW, Yan B, Greenway D, Petersen DR, Parkinson A (1994) Purification and characterization of two rat liver microsomal carboxylesterases (hydrolase A and B). Arch Biochem Biophys 315:495–512CrossRefGoogle Scholar
  18. Morton CL, Potter PM (2000) Comparison of Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, Spodoptera frugiperda, and COS7 cells for recombinant gene expression. Application to a rabbit liver carboxylesterase. Mol Biotechnol 16:193–202CrossRefGoogle Scholar
  19. Nickel W (2010) Pathways of unconventional protein secretion. Curr Opin Biotechnol 21:621–626CrossRefGoogle Scholar
  20. Okada Y, Wakabayashi K (1988) Purification and characterization of esterases D-1 and D-2 from human enterocytes. Arch Biochem Biophys 263:130–136CrossRefGoogle Scholar
  21. Oosterhoff D, Pinedo HM, van der Meulen IH, de Graaf M, Sone T, Kruyt FA, van Beusechem VW, Haisma HJ, Gerritsen WR (2002) Secreted and tumour targeted human carboxylesterase for activation of irinotecan. Br J Cancer 87:659–664CrossRefGoogle Scholar
  22. Pham PL, Kamen A, Durocher Y (2006) Large-scale transfection of mammalian cells for the fast production of recombinant protein. Mol Biotechnol 34:225–237CrossRefGoogle Scholar
  23. Pindel EV, Kedishvili NY, Abraham TL, Brzezinski MR, Zhang J, Dean RA, Bosron WF (1997) Purification and cloning of a broad substrate specificity human liver carboxylesterase that catalyzes the hydrolysis of cocaine and heroin. J Biol Chem 272:14769–14775CrossRefGoogle Scholar
  24. Potter PM, Wolverton JS, Morton CL, Wierdl M, Danks MK (1998) Cellular localization domains of a rabbit and a human carboxylesterase: influence on irinotecan (CPT-11) metabolism by the rabbit enzyme. Cancer Res 58:3627–3632Google Scholar
  25. Robbi M, Beaufay H (1991) The COOH terminus of several liver carboxylesterases targets these enzymes in the lumen of the endoplasmic reticulum. Biochem Pharmacol 71:657–669Google Scholar
  26. Robbi M, Beaufay H (1992) Topogenesis of carboxylesterases: a rat liver isoenzyme ending in –HTEHT–COOH is a secreted protein. Biochem Biophys Res Commun 183:836–841CrossRefGoogle Scholar
  27. Ross MK, Borazjani A, Edwards CC, Potter PM (2006) Hydrolytic metabolism of pyrethroids by human and other mammalian carboxylesterases. Biochem Pharmacol 71:657–669CrossRefGoogle Scholar
  28. Ross MK, Borazjani A (2007) Enzymatic activity of human carboxylesterases. Curr Protoc Toxicol 33:4.24.1–4.24.14Google Scholar
  29. Satoh T, Hosokawa M (2006) Structure, function and regulation of carboxylesterases. Chem Biol Interact 162:195–211CrossRefGoogle Scholar
  30. Schiel MA, Green SL, Davis WI, Sanghani PC, Bosron WF, Sanghani SP (2007) Expression and characterization of a human carboxylesterase 2 splice variant. J Pharmacol Exp Ther 323:94–101CrossRefGoogle Scholar
  31. Schmidt FR (2004) Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 65:363–372CrossRefGoogle Scholar
  32. Schwer H, Langmann T, Daiq R, Becker A, Aslanidis C, Schmitz G (1997) Molecular cloning and characterization of a novel putative carboxylesterase, present in human intestine and liver. Biochem Biophys Res Commun 233:117–120CrossRefGoogle Scholar
  33. Sun Z, Murry DJ, Sanghani SP, Davis WI, Kedishvili NZ, Zou Q, Hurley TD, Bosron WF (2004) Methylphenidate is stereoselectively hydrolysed by human carboxylesterase CES1A1. J Pharmacol Exp Ther 310:469–476CrossRefGoogle Scholar
  34. Takai S, Matsuda A, Usami Y, Adachi T, Sugiyama T, Katagiri Y, Takematsu M, Hirano K (1997) Hydrolytic profile for ester- or amide-linkage by carboxylesterases pI 5.3 and 4.5 from human liver. Biol Pharm Bull 20:869–873CrossRefGoogle Scholar
  35. Tarentino AL, Trimble RM, Maley F (1978) endo-beta-N-Acetylglucosaminidase from Streptomyces plicatus. Methods Enzymol 50:574–580CrossRefGoogle Scholar
  36. Tarentino AL, Plummer TH Jr (1994) Enzymatic deglycosylation of asparagine-linked glycans: purification, properties, and specificity of oligosaccharide-cleaving enzymes from Flavobacterium meningosepticum. Methods Enzymol 230:44–57CrossRefGoogle Scholar
  37. Tyminski E, Leroy S, Terada K, Finkelstein DM, Hyatt JL, Danks MK, Potter PM, Saeki Y, Chiocca EA (2005) Brain tumor oncolysis with replication-conditional herpes simplex virus type1 expressing the prodrug-activating genes, CYP2B1 and secreted human intestinal carboxylesterase, in combination with cyclophosphamide and irinotecan. Cancer Res 65:6850–6857CrossRefGoogle Scholar
  38. Uchino J, Takayama K, Harada A, Sone T, Harada T, Curiel DT, Kuroki M, Nakanishi Y (2008) Tumor targeting carboxylesterase fused with anti-CEA scFv improve anticancer effect with a less toxic dose of irinotecan. Cancer Gene Ther 15:94–100CrossRefGoogle Scholar
  39. Vistoli G, Pedretti A, Mazzolari A, Testa B (2010) Homology modeling and metabolism prediction of human carboxylesterase-2 using docking analysis by GriDock: a parallelized tool based on AutoDock 4.0. J Comput Aided Mol Des 24:771–787CrossRefGoogle Scholar
  40. Wadkins RM, Hyatt JL, Wei X, Yoon KJ, Wierdl M, Edwards CC, Morton CL, Obenauer JC, Damodaran K, Beroza P, Danks MK, Potter PM (2005) Identification and characterization of novel benzyl (diphenylethane-1,2-dione) analogue as inhibitors of mammalian carboxylesterases. J Med Chem 48:2906–2915CrossRefGoogle Scholar
  41. Waugh DS (2005) Making the most of affinity tags. Trends Biotechnol 23:316–320CrossRefGoogle Scholar
  42. Williams ET, Ehsani ME, Wang X, Wang H, Qian YW, Wrighton SA, Perkins EJ (2008) Effect of buffer components and carrier solvents on in vitro activity of recombinant human carboxylesterases. J Pharmacol Toxicol Methods 57:138–144CrossRefGoogle Scholar
  43. Williams ET, Bacon JA, Bender DM, Lowinger JJ, Guo WK, Eshani ME, Wang X, Wang H, Qian YW, Ruterbories KJ, Wrighton SA, Perkins EJ (2011) Characterization of the expression and activity of carboxylesterases 1 and 2 from the beagle dog, cynomolgus monkey, and human. Drug Metab Dispos 39:2305–2313CrossRefGoogle Scholar
  44. Xie M, Yang D, Liu L, Xue B, Yan B (2002) Human and rodent carboxylesterases: immunorelatedness, overlapping substrate specificity, differential sensitivity to serine enzyme inhibitors, and tumor-related expression. Drug Metab Dispos 30:541–547CrossRefGoogle Scholar
  45. Yan B, Yang D, Bullock P, Parkinson A (1995) Rat serum carboxylesterase. Cloning, expression, regulation, and evidence of secretion from liver. J Biol Chem 270:19128–19134CrossRefGoogle Scholar
  46. Zhao Y, Bishop B, Clay JE, Lu W, Jones M, Daenke S, Siebold C, Stuart DI, Jones EY, Aricescu AR (2011) Automation of large scale transient protein expression in mammalian cells. J Struct Biol 175:209–215CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Joana Lamego
    • 1
    • 2
  • Bárbara Cunha
    • 2
  • Cristina Peixoto
    • 2
  • Marcos F. Sousa
    • 2
  • Paula M. Alves
    • 1
    • 2
  • Ana L. Simplício
    • 1
    • 2
  • Ana S. Coroadinha
    • 1
    • 2
  1. 1.Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
  2. 2.IBETOeirasPortugal

Personalised recommendations