Advertisement

Applied Microbiology and Biotechnology

, Volume 94, Issue 3, pp 575–582 | Cite as

Factors influencing the degradation of garbage in methanogenic bioreactors and impacts on biogas formation

  • Masahiko MoritaEmail author
  • Kengo SasakiEmail author
Mini-Review

Abstract

Anaerobic digestion of garbage is attracting much attention because of its application in waste volume reduction and the recovery of biogas for use as an energy source. In this review, various factors influencing the degradation of garbage and the production of biogas are discussed. The surface hydrophobicity and porosity of supporting materials are important factors in retaining microorganisms such as aceticlastic methanogens and in attaining a higher degradation of garbage and a higher production of biogas. Ammonia concentration, changes in environmental parameters such as temperature and pH, and adaptation of microbial community to ammonia have been related to ammonia inhibition. The effects of drawing electrons from the methanogenic community and donating electrons into the methanogenic community on methane production have been shown in microbial fuel cells and bioelectrochemical reactors. The influences of trace elements, phase separation, and co-digestion are also summarized in this review.

Keywords

Anaerobic digestion Methane fermentation Biogas Garbage 

Notes

Acknowledgment

This work was supported in part by the New Energy and Industrial Technology Development Organization (NEDO) of Japan.

References

  1. Abouelenien F, Fujiwara W, Namba Y, Kosseva M, Nishio N, Nakashimada Y (2010) Improved methane fermentation of chicken manure via ammonia removal by biogas recycle. Bioresour Technol 101:6368–6373CrossRefGoogle Scholar
  2. Agdag ON, Sponza DT (2008) Sequential anaerobic, aerobic/anoxic treatment of simulated landfill leachate. Environ Technol 29:183–197CrossRefGoogle Scholar
  3. Ahring BK (2003) Perspectives for anaerobic digestion. Adv Biochem Eng Biotechnol 81:1–30Google Scholar
  4. Angelidaki I, Ahring BK (1993) Thermophilic anaerobic digestion of livestock waste: the effect of ammonia. Appl Microbiol Biotechnol 38:560–564CrossRefGoogle Scholar
  5. Angelidaki I, Ahring BK (1994) Anaerobic thermophilic digestion of manure at different ammonia loads: effect of temperature. Water Res 28:727–731CrossRefGoogle Scholar
  6. Angelidaki I, Chen X, Cui J, Kaparaju P, Ellegaard L (2006) Thermophilic anaerobic digestion of source-sorted organic fraction of household municipal solid waste: start-up procedure for continuously stirred tank reactor. Water Res 40:2621–2628CrossRefGoogle Scholar
  7. Angelidaki I, Karakashev D, Bastone DJ, Plugge CM, Stams AJM (2011) Biomethanation and its potential. Methods Enzymol 494:327–351CrossRefGoogle Scholar
  8. Baloch MI, Akunna JC, Collier PJ (2006) Carbon and nitrogen removal in a granular bed baffled reactor. Environ Technol 27:201–208CrossRefGoogle Scholar
  9. Bernet N, Béline F (2009) Challenges and innovations on biological treatment of livestock effluents. Bioresour Technol 100:5431–5436CrossRefGoogle Scholar
  10. Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555CrossRefGoogle Scholar
  11. Borja R, Sánchez E, Weiland P, Travieso L (1993) Effect of ionic exchanger addition on the anaerobic digestion of cow manure. Environ Technol 14:891–896CrossRefGoogle Scholar
  12. Borja R, Sánchez E, Durán MM (1996) Effect of the clay mineral zeolite on ammonia inhibition of anaerobic thermophilic reactors treating cattle manure. J Environ Sci Health A31:479–500CrossRefGoogle Scholar
  13. Braun R, Huber P, Meyrath J (1981) Ammonia toxicity in liquid piggery manure digestion. Biotechnol Lett 3:159–164CrossRefGoogle Scholar
  14. Castilla P, Aguilar L, Escamilla M, Silva B, Milán Z, Monroy O, Meraz M (2009) Biological degradation of a mixture of municipal wastewater and organic garbage leachate in expanded bed anaerobic reactors and a zeolite filter. Water Sci Technol 59:723–728CrossRefGoogle Scholar
  15. Chauhan A, Ogram A (2005) Evaluation of support matrices for immobilization of anaerobic consortia for efficient carbon cycling in waste regeneration. Biochem Biophys Res Commun 327:884–893CrossRefGoogle Scholar
  16. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064CrossRefGoogle Scholar
  17. Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43:3953–3958CrossRefGoogle Scholar
  18. Clauwaert P, Tolêdo R, van der Ha D, Crab R, Verstraete W, Hu H, Udert KM, Rabaey K (2008) Combining biocatalyzed electrolysis with anaerobic digestion. Water Sci Technol 57:575–579CrossRefGoogle Scholar
  19. de Baere LA, Devocht M, Assche P, Van Asschue P, Verstraete W (1984) Influence of high NaCl and NH4Cl salt levels on methanogenic associations. Water Res 18:543–548CrossRefGoogle Scholar
  20. Demeestere K, Smet E, Van Langenhove H, Galbacs Z (2001) Optimization of magnesium ammonium phosphate precipitation and its applicability to the removal of ammonium. Environ Technol 22:1419–1428CrossRefGoogle Scholar
  21. Dong X, Plugge C, Stams AJM (1994) Anaerobic degradation of propionate by a mesophilic acetogenic bacterium in coculture and triculture with different methanogens. Appl Environ Microbiol 60:2834–2838Google Scholar
  22. Feng C, Shimada S, Zhang Z, Maekawa T (2008) A pilot plant two-phase anaerobic digestion system for bioenergy recovery from swine wastes and garbage. Waste Manag 28:1827–1834CrossRefGoogle Scholar
  23. Forster-Carneiro T, Pérez M, Romero LI (2008) Thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste. Bioresour Technol 99:6763–6770CrossRefGoogle Scholar
  24. Friedmann HC, Klein A, Thauer RK (1990) Structure and function of the nickel porphinoid, coenzyme F430 and of its enzyme, methyl coenzyme M reductase. FEMS Microbiol Rev 87:339–348CrossRefGoogle Scholar
  25. Gallert C, Bauer S, Winter J (1998) Effect of ammonia on the anaerobic degradation of protein by a mesophilic and thermophilic biowaste population. Appl Microbiol Biotechnol 50:495–501CrossRefGoogle Scholar
  26. Garcia ML, Angenent LT (2009) Interaction between temperature and ammonia in mesophilic digestors for animal waste treatment. Water Res 43:2373–2382CrossRefGoogle Scholar
  27. Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA 103:11358–11363CrossRefGoogle Scholar
  28. Gottschalk G, Thauer RK (2001) The Na+-translocating methyltransferase complex from methanogenic archaea. Biochim Biophys Acta 1505:28–36CrossRefGoogle Scholar
  29. Gregory KB, Bond DR, Lovley DR (2004) Graphite electrodes as electron donor for anaerobic respiration. Environ Microbiol 6:596–604CrossRefGoogle Scholar
  30. Hansen KH, Angelidaki I, Ahring BK (1998) Anaerobic digestion of swine manure: inhibition by ammonia. Water Res 32:5–12CrossRefGoogle Scholar
  31. Hansen KH, Angelidaki I, Ahring BK (1999) Improving thermophilic anaerobic digestion of swine manure. Water Res 33:1805–1810CrossRefGoogle Scholar
  32. Haruta S, Nakamura T, Nakamura K, Hemmi H, Ishii M, Igarashi Y, Nishino T (2005) Microbial diversity in biodegradation and reutilization processes of garbage. J Biosci Bioeng 99:1–11CrossRefGoogle Scholar
  33. Hashimoto AG (1986) Ammonia inhibition of methanogenesis from cattle wastes. Agric Wastes 17:241–261CrossRefGoogle Scholar
  34. Hawkes FR, Hussy I, Kyazze G, Dinsdale R, Hawkes DL (2007) Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int J Hydrogen Energy 32:172–184CrossRefGoogle Scholar
  35. Ikbal TY, Fujimura Y, Shigematsu T, Morimura S, Kida K (2003) The affecting factors for optimization of mesophilic aceticlastic methanogenesis. Jpn J Water Treat Biol 39:189–197CrossRefGoogle Scholar
  36. Imachi H, Sakai S, Ohashi A, Harada H, Hanada S, Kamagata Y, Sekiguchi Y (2007) Pelotomaculum propionicum sp. nov., an anaerobic, mesophilic, obligately syntrophic propionate-oxidising bacterium. Int J Syst Evol Microbiol 57:1487–1492CrossRefGoogle Scholar
  37. Ishii S, Hotta Y, Watanabe K (2008) Methanogenesis versus electrogenesis: morphological and phylogenetic comparisons of microbial communities. Biosci Biotechnol Biochem 72:286–294CrossRefGoogle Scholar
  38. Jarvis Å, Nordberg Å, Jarsvik T, Mathisen B, Svensson BH (1997) Improvement of a grass-clover silage-fed biogas process by the addition of cobalt. Biomass Bioenerg 12:453–460CrossRefGoogle Scholar
  39. Jung S, Regan JM (2011) Influence of external resistance on electrogenesis, methanogenesis, and anode prokaryotic communities in microbial fuel cells. Appl Environ Microbiol 77:564–571CrossRefGoogle Scholar
  40. Kayhanian M (1999) Ammonia inhibition in high-solids biogasification: an overview and practical solutions. Environ Technol 20:355–365CrossRefGoogle Scholar
  41. Kida K, Shigematsu T, Kijima J, Numaguchi M, Mochinaga Y, Abe N, Morimura M (2001) Influence of Ni2+ and Co2+ on methanogenic activity and the amounts of coenzymes involved in methanogenesis. J Biosci Bioeng 91:590–595Google Scholar
  42. Kim M, Ahn Y-H, Speece RE (2002) Comparative process stability and efficiency of anaerobic digestion; mesophilic vs. thermophilic. Water Res 36:4369–4385CrossRefGoogle Scholar
  43. Kim HW, Han SK, Shin HS (2003) The optimization of food waste addition as a co-substrate in anaerobic digestion of sewage sludge. Waste Manage Res 21:515–526CrossRefGoogle Scholar
  44. Kim JR, Min B, Logan BE (2005) Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl Microbiol Biotechnol 68:23–30CrossRefGoogle Scholar
  45. Koike Y, An MZ, Tang YQ, Syo T, Osaka N, Morimura S, Kida K (2009) Production of fuel ethanol and methane from garbage by high-efficiency two-stage fermentation process. J Biosci Bioeng 108:508–512CrossRefGoogle Scholar
  46. Koster IW (1986) Characteristics of the pH-influenced adaptation on methanogenic sludge to ammonia toxicity. J Chem Tech Biotechnol 36:445–455Google Scholar
  47. Lee DH, Behera SK, Kim JW, Park H-S (2009a) Methane production potential of leachate generated from Korean food waste recycling facilities: a lab-scale study. Waste Manag 29:876–882CrossRefGoogle Scholar
  48. Lee M, Hidaka T, Hagiwara W, Tsuno H (2009b) Comparative performance and microbial diversity of hyperthermophilic and thermophilic co-digestion of kitchen garbage and excess sludge. Bioresour Technol 100:578–585CrossRefGoogle Scholar
  49. Lee DY, Ebie Y, Xu KQ, Li YY, Inamori Y (2010) Continuous H2 and CH4 production from high-solid food waste in the two-stage thermophilic fermentation process with the recirculation of digester sludge. Bioresour Technol 101:S42–S47CrossRefGoogle Scholar
  50. Liu D, Zeng RJ, Angelidaki I (2008) Effects of pH and hydraulic retention time on hydrogen production versus methanogenesis during anaerobic fermentation of organic household solid waste under extreme-thermophilic temperature (70 degrees C). Biotechnol Bioeng 100:1108–1114CrossRefGoogle Scholar
  51. Liu K, Tang YQ, Matsui T, Morimura S, Wu XL, Kida K (2009) Thermophilic anaerobic co-digestion of garbage, screened swine and dairy cattle manure. J Biosci Bioeng 107:54–60CrossRefGoogle Scholar
  52. Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192CrossRefGoogle Scholar
  53. Lovley DR (2006) Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr Opin Biotechnol 17:327–332CrossRefGoogle Scholar
  54. Mata-Alvarez J, Macé S, Llabrés P (2000) Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour Technol 74:3–16CrossRefGoogle Scholar
  55. Mata-Alvarez J, Dosta J, Macé S, Astals S (2011) Codigestion of solid wastes: a review of its uses and perspectives including modeling. Crit Rev Biotechnol 31:99–111CrossRefGoogle Scholar
  56. McCarty PL, McKinney RE (1961) Salt toxicity in anaerobic digestion. J Water Poll Contr Fed 33:399–415Google Scholar
  57. McInerney MJ, Sieber JR, Gunsalus RP (2009) Syntrophy in anaerobic global carbon cycles. Curr Opin Biotechnol 20:623–632CrossRefGoogle Scholar
  58. Montgomery R (2004) Development of biobased products. Bioresour Technol 91:1–29CrossRefGoogle Scholar
  59. Morita M, Malvankar NS, Franks AE, Summers ZM, Giloteaux L, Rotaru AE, Rotaru C, Lovley DR (2011) Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates. mBio 2:e00159–11CrossRefGoogle Scholar
  60. Murray WD, van den Berg L (1981) Effects of nickel, cobalt, and molybdenum on performance of methanogenic fixed-film reactors. Appl Environ Microb 42:502–505Google Scholar
  61. Osuna MB, Zandvoort MH, Iza JM, Lettinga G, Lens PNL (2003) Effects of trace element addition on volatile fatty acid conversions in anaerobic granular sludge reactors. Environ Technol 24:573–587CrossRefGoogle Scholar
  62. Park DH, Laivenieks M, Guettler MV, Jain MK, Zeikus JG (1999) Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolic production. Appl Environ Microbiol 65:2912–2917Google Scholar
  63. Park YJ, Hong F, Cheon J, Hidaka T, Tsuno H (2008) Comparison of thermophilic anaerobic digestion characteristics between single-phase and two-phase systems for kitchen garbage treatment. J Biosci Bioeng 105:48–54CrossRefGoogle Scholar
  64. Picanço AP, Vallero MVG, Gianotti EP, Zaiat M, Blundi CE (2001) Influence of porosity and composition of supports on the methanogenic biofilm characteristics developed in a fixed bed anaerobic reactor. Water Sci Technol 44:197–204Google Scholar
  65. Pobeheim H, Munk B, Johansson J, Guebitz GM (2010) Influence of trace elements on methane formation from a synthetic model substrate for maize silage. Bioresour Technol 101:836–839CrossRefGoogle Scholar
  66. Pringle JH, Fletcher M (1983) Influence of substratum wettability on attachment of freshwater bacteria to solid surfaces. Appl Environ Microbiol 45:811–817Google Scholar
  67. Robert C, Del’Homme C, Bernalier-Donadille A (2001) Interspecies H2 transfer in cellulose degradation between fibrolytic bacteria and H2-utilizing microorganisms from the human colon. FEMS Microbiol Lett 205:209–214CrossRefGoogle Scholar
  68. Sasaki K, Haruta S, Tatara M, Yamazawa A, Ueno Y, Ishii M, Igarashi Y (2006) Microbial community in methanogenic packed-bed reactor successfully operating at short hydraulic retention time. J Biosci Bioeng 101:271–273CrossRefGoogle Scholar
  69. Sasaki K, Haruta S, Ueno Y, Ishii M, Igarashi Y (2007) Microbial population in the biomass adhering to supporting material in a packed-bed reactor degrading organic solid waste. Appl Microbiol Biotechnol 75:941–952CrossRefGoogle Scholar
  70. Sasaki K, Morita M, Hirano S, Ohmura N, Igarashi Y (2009) Effect of adding carbon fiber textiles to methanogenic bioreactors used to treat an artificial garbage slurry. J Biosci Bioeng 108:130–135CrossRefGoogle Scholar
  71. Sasaki K, Sasaki D, Morita M, Hirano S, Matsumoto N, Ohmura N, Igarashi Y (2010a) Efficient treatment of garbage slurry in methanogenic bioreactor packed by fibrous sponge with high porosity. Appl Microbiol Biotechnol 86:1573–1583CrossRefGoogle Scholar
  72. Sasaki K, Morita M, Hirano S, Sasaki D, Ohmura N, Igarashi Y (2010b) Efficient degradation of rice straw in the reactors packed by carbon fiber textiles. Appl Microbiol Biotechnol 87:1579–1586CrossRefGoogle Scholar
  73. Sasaki K, Sasaki D, Morita M, Hirano S, Matsumoto N, Ohmura N, Igarashi Y (2010c) Bioelectrochemical system stabilizes methane fermentation from garbage slurry. Bioresour Technol 101:3415–3422CrossRefGoogle Scholar
  74. Sasaki K, Morita M, Hirano S, Ohmura N, Igarashi Y (2011a) Decreasing ammonia inhibition in thermophilic bioreactors using carbon fiber textiles. Appl Microbiol Biotechnol 90:1555–1561CrossRefGoogle Scholar
  75. Sasaki K, Morita M, Sasaki D, Hirano S, Matsumoto N, Ohmura N, Igarashi Y (2011b) Methanogenic communities on the electrodes of bioelectrochemical reactors without membrane. J Biosci Bioeng 111:47–49CrossRefGoogle Scholar
  76. Schnürer A, Nordberg A (2008) Ammonia, a selective agent for methane production by syntrophic acetate oxidation at mesophilic temperature. Water Sci Technol 57:735–740CrossRefGoogle Scholar
  77. Schnürer A, Zellner G, Svensson BH (1999) Mesophilic syntrophic acetate oxidation during methane formation in biogas reactors. FEMS Microbiol Ecol 29:249–261CrossRefGoogle Scholar
  78. Sekiguchi Y, Kamagata Y, Harada H (2001) Recent advances in methane fermentation technology. Curr Opin Biotechnol 12:277–282CrossRefGoogle Scholar
  79. Show KY, Tay JH (1999) Influence of support media on biomass growth and retention in anaerobic filters. Water Res 33:1471–1481CrossRefGoogle Scholar
  80. Sprott GD, Patel GB (1986) Ammonia toxicity in pure culture of methanogenic bacteria. Syst Appl Microbiol 7:358–363CrossRefGoogle Scholar
  81. Sprott GD, Shaw KM, Jarrell KF (1984) Ammonia/potassium exchange in methanogenic bacteria. J Biol Chem 259:12602–12608Google Scholar
  82. Stams AJM, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577CrossRefGoogle Scholar
  83. Sung S, Liu T (2003) Ammonia inhibition on thermophilic anaerobic digestion. Chemosphere 53:43–52CrossRefGoogle Scholar
  84. Takashima M, Speece RE (1989) Mineral nutrient requirements for high-rate methane fermentation of acetate at low SRT. Res J Water Pollut C 61:1645–1650Google Scholar
  85. Takashima M, Speece RE (1990) Mineral requirements for methane fermentation. Crit Rev Environ Control 19:465–479CrossRefGoogle Scholar
  86. Tang Y, Shigematsu T, Morimura T, Kida K (2005) Microbial community analysis of mesophilic anaerobic degrading process using bovine serum albumin (BSA)-fed continuous cultivation. J Biosci Bioeng 99:150–164CrossRefGoogle Scholar
  87. Tatara M, Yamazawa A, Ueno Y, Fukui H, Goto M, Sode K (2004) High-rate thermophilic methane fermentation on short-chain fatty acids in a down-flow anaerobic packed-bed reactor. Bioprocess Biosyst Eng 27:105–113CrossRefGoogle Scholar
  88. Tatara M, Makiuchi T, Ueno Y, Goto M, Sode K (2008) Methanogenesis from acetate and propionate by thermophilic down-flow anaerobic packed-bed reactor. Bioresour Technol 99:4786–4795CrossRefGoogle Scholar
  89. Thauer RK, Kaster A-N, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591CrossRefGoogle Scholar
  90. Thrash JC, Coates JD (2008) Review: direct and indirect electrical stimulation of microbial metabolism. Environ Sci Technol 42:3921–3931CrossRefGoogle Scholar
  91. Ueno Y, Fukui H, Goto M (2007a) Operation of a two-stage fermentation process producing hydrogen and methane from organic waste. Environ Sci Technol 41:1413–1419CrossRefGoogle Scholar
  92. Ueno Y, Tatara M, Fukui H, Makiuchi T, Goto M, Sode K (2007b) Production of hydrogen and methane from organic solid wastes by phase-separation of anaerobic process. Bioresour Technol 98:1861–1865CrossRefGoogle Scholar
  93. Umaña O, Nikolaeva S, Sánchez E, Borja R, Raposo F (2008) Treatment of screened dairy manure by upflow anaerobic fixed bed reactors packed with waste type rubber and a combination of waste type rubber and zeolite: effect of the hydraulic retention time. Bioresour Technol 99:7412–7417CrossRefGoogle Scholar
  94. Van Pelt AWJ, Weerkamp AH, Uyen MHW, Busscher HJ, De Jong HP, Arends J (1985) Adhesion of Streptococcus sanguis CH3 to polymers with different surface free energies. Appl Environ Microbiol 49:1270–1275Google Scholar
  95. van Velsen AFM (1979) Adaptation of methanogenic sludge to high ammonia-nitrogen concentrations. Water Res 13:995–999CrossRefGoogle Scholar
  96. Vavilin VA, Vasiliev VB, Rytov SV (1995) Modelling of gas pressure effects on anaerobic digestion. Bioresour Technol 52:25–32CrossRefGoogle Scholar
  97. Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M (2010) Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenotrophic methanogenic culture. Bioresour Technol 101:3038–3090CrossRefGoogle Scholar
  98. Wiegant WM, Zeeman G (1986) The mechanism of ammonia inhibition in the thermophilic digestion of livestock wastes. Agric Wastes 16:243–253CrossRefGoogle Scholar
  99. Wilkie A, Colleran E (1984) Start-up of anaerobic filter containing different support materials using pig slurry supernatant. Biotechnol Lett 6:735–740CrossRefGoogle Scholar
  100. Wolin EA, Wolfe RS, Wolin MJ (1964) Viologen dye inhibition of methane formation by Methanobacillus omelianskii. J Bacteriol 87:993–998Google Scholar
  101. Worm P, Fernando FG, Lens PNL, Plugge CM (2009) Decreased activity of a propionate degrading community in a UASB reactor fed with synthetic medium without molybdenum, tungsten and selenium. Enzyme Microb Tech 45:139–145CrossRefGoogle Scholar
  102. Yadvika S, Sreekrishnan TR, Kohli S, Rana V (2004) Enhancement of biogas production from solid substrates using different techniques—a review. Bioresour Technol 95:1–10CrossRefGoogle Scholar
  103. Zandvoort MH, Hullebusch ED, Golubnic S, Gieteling J, Lens PNL (2006) Induction of cobalt limitation in methanol-fed UASB reactors. J Chem Technol Biotechnol 81:1486–1495CrossRefGoogle Scholar
  104. Zeeman G, Wiegant WM, Koster-Treffers ME, Lettinga G (1985) The influence of the total ammonia concentration on the thermophilic digestion of cow manure. Agric Wastes 14:19–35CrossRefGoogle Scholar
  105. Zhang D, Li J, Guo P, Li P, Suo Y, Wang X, Cui Z (2011) Dynamic transition of microbial communities in response to acidification in fixed-bed anaerobic baffled reactors (FABR) of two different flow directions. Bioresour Technol 102:4703–4711CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Biotechnology Sector, Environmental Science Research LaboratoryCentral Research Institute of Electric Power IndustryChibaJapan
  2. 2.Department of Biotechnology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan

Personalised recommendations