Skip to main content

A biomimetic approach towards synthesis of zinc oxide nanoparticles

Abstract

Using natural processes as inspiration, the present study demonstrates a positive correlation between zinc metal tolerance ability of a soil fungus and its potential for the synthesis of zinc oxide (ZnO) nanoparticles. A total of 19 fungal cultures were isolated from the rhizospheric soils of plants naturally growing at a zinc mine area in India and identified on the genus, respectively the species level. Aspergillus aeneus isolate NJP12 has been shown to have a high zinc metal tolerance ability and a potential for extracellular synthesis of ZnO nanoparticles under ambient conditions. UV–visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction analysis, transmission electron microscopy, and energy dispersive spectroscopy studies further confirmed the crystallinity, morphology, and composition of synthesized ZnO nanoparticles. The results revealed the synthesis of spherical nanoparticles coated with protein molecules which served as stabilizing agents. Investigations on the role of fungal extracellular proteins in the synthesis of nanoparticles indicated that the process is nonenzymatic but involves amino acids present in the protein chains.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Auld DS (2001) Zinc coordination sphere in biochemical zinc sites. BioMetals 14:271–313

    Article  CAS  Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B 28:313–318

    Article  CAS  Google Scholar 

  • Akhtar MS, Ameen S, Ansari SA, Yang O (2011) Synthesis and characterization of ZnO nanorods and balls nanomaterials for dye sensitized solar cells. J Nanoeng Nanomanuf 1:71–76

    Google Scholar 

  • Bahadur H, Srivastava AK, Sharma RK, Chandra S (2008) Morphologies of sol–gel derived thin films of ZnO using different precursor materials and their nanostructures. Nano Res Lett 2:469–475

    Article  Google Scholar 

  • Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B 68:88–92

    Article  CAS  Google Scholar 

  • Becheri A, Dürr M, Lo Nostro P, Baglioni P (2008) Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J Nanopart Res 10:679–689

    Article  CAS  Google Scholar 

  • Bensaude-Vincent B, Arribart H, Bouligand Y, Sanchez C (2002) Chemists and the school of nature. New J Chem 26:1–5

    Article  CAS  Google Scholar 

  • Fratzl P (2007) Biomimetic materials research: what can we really learn from nature’s structural materials? J R Soc Interface 4:637–642

    Article  CAS  Google Scholar 

  • Giller KE, Witter E, McGrath SP (2009) Heavy metals and soil microbes. Soil Biol Biochem 41:2031–2037

    Article  CAS  Google Scholar 

  • Griffiths BS, Ritz K, Wheatley R, Kuan HL, Boag B, Christensen S, Ekelund F, Sørensen SJ, Muller S, Bloem J (2001) An examination of the biodiversity-ecosystem function relationship in arable soil microbial communities. Soil Biol Biochem 33:1713–1722

    Article  CAS  Google Scholar 

  • Haugland R, Varma M, Wymer L, Vesper S (2004) Quantitative PCR analysis of selected Aspergillus, Penicillium and Paecilomyces species. Syst Appl Microbiol 27:198–210

    Article  CAS  Google Scholar 

  • Houbraken J, Lopez-Quintero CA, Frisvad JC, Boekhout T, Theelen B, Franco-Molano AE, Samson RA (2011) Penicillium araracuarense sp. nov., Penicillium elleniae sp. nov., Penicillium penarojense sp. nov., Penicillium vanderhammenii sp. nov. and Penicillium wotroi sp. nov., isolated from leaf litter. Int J Syst Evol Microbiol 61:1462–1475

    Article  Google Scholar 

  • Jackson ML (1967) Soil chemical analysis. Prentice Hall of Indian Private Limited, New Delhi

    Google Scholar 

  • Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3:635–641

    Article  CAS  Google Scholar 

  • JCPDS-ICDD (2008) PCPDF WIN, File no. 36-1451. JCPDS-ICDD, Swarthmore

    Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles microbially fabricated. Proc Natl Acad Sci USA 96:13611–13614

    Article  CAS  Google Scholar 

  • Kröger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286:1129–1132

    Article  Google Scholar 

  • Labrenz M, Druschel GK, Thomsen-Ebert T, Gilbert B, Welch SA, Kemner KM, Logan GA, Summons RE, Stasio GD, Bond PL, Lai B, Kelly SD, Banfield JF (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290:1744–1747

    Article  CAS  Google Scholar 

  • Lovley DR, Stolz JF, Nord GL, Phillips EJP (1987) Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330:252–254

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Nagy LG, Petkovits T, Kovács GM, Voigt K, Vágvölgyi C, Papp T (2011) Where is the unseen fungal diversity hidden? A study of Mortierella reveals a large contribution of reference collections to the identification of fungal environmental sequences. New Phytol 191:789–794

    Article  Google Scholar 

  • Naik RR, Stone MO (2005) Integrating biomimetics. Mater Today 8:18–26

    Article  CAS  Google Scholar 

  • Nangia Y, Wangoo N, Sharma S, Wu JS, Dravid V, Shekhawat GS, Suri CR (2009) Facile biosynthesis of phosphate capped gold nanoparticles by a bacterial isolate Stenotrophomonas maltophilia. Appl Phys Lett 94:233901–233903

    Article  Google Scholar 

  • Nicholas KB, Nicholas HB, Deerfield DW (1997) GeneDoc: analysis and visualization of genetic variation. EMBNEW.NEWS 4:14

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Circular 939 US Department of Agriculture, Washington DC, USA

  • Peterson SW (2008) Phylogenetic analysis of Aspergillus species using DNA sequences from four loci. Mycologia 100:205–226

    Article  CAS  Google Scholar 

  • Pócsi I (2011) Toxic metal/metalloid tolerance in fungi—a biotechnology-oriented approach. In: Bánfalvi G (ed) Cellular effects of heavy metals. Springer, Dordrecht, pp 31–58

    Chapter  Google Scholar 

  • Prasad K, Jha AK (2009) ZnO nanoparticles: synthesis and adsorption study. Nat Sci 1:129–135

    CAS  Google Scholar 

  • Prasad V, D’Souza C, Yadav D, Shaikh AJ, Vigneshwaran N (2006) Spectroscopic characterization of zinc oxide nanorods synthesized by solid-state reaction. Spectrochim Acta Part A 65:173–178

    Article  Google Scholar 

  • Pum D, Sleytr UB (1999) The application of bacterial S-layers in molecular nanotechnology. Trends Biotechnol 17:8–12

    Article  CAS  Google Scholar 

  • Saeeda A, Iqbala M, Zafarb SI (2009) Immobilization of Trichoderma viride for enhanced methylene blue biosorption: batch and column studies. J Hazard Mater 168:406–415

    Article  Google Scholar 

  • Sarikaya M, Tamerler C, Jen AKY, Schulten K, Baneyx F (2003) Molecular biomimetics: nanotechnology through biology. Nat Mater 2:577–585

    Article  CAS  Google Scholar 

  • Sanchez C, Arribart H, Giraud Guille M (2005) Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat Mater 4:277–288

    Article  CAS  Google Scholar 

  • Schubert K, Greslebin A, Groenewald JZ, Crous PW (2009) New foliicolous species of Cladosporium from South America. Persoonia 22:111–122

    Article  CAS  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96

    Article  CAS  Google Scholar 

  • Simon UK, Groenewald JZ, Crous PW (2009) Cymadothea trifolii, an obligate biotrophic leaf parasite of Trifolium, belongs to Mycosphaerellaceae as shown by nuclear ribosomal DNA analyses. Persoonia 22:49–55

    Article  CAS  Google Scholar 

  • Simpson RJ (2004) Purifying proteins for proteomics: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sridevi D, Rajendran KV (2009) Synthesis and optical characteristics of ZnO nanocrystals. Bull Mater Sci 32:165–168

    Article  CAS  Google Scholar 

  • Wahab R, Kim YS, Lee DS, Seo JM, Shin HS (2010) Controlled synthesis of zinc oxide nanoneedles and their transformation to microflowers. Sci Adv Mater 2:35–42

    Article  CAS  Google Scholar 

  • Walkley AJ, Black IA (1934) Estimation of soil organic carbon by the chromic acid titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  • Wang ZL (2004) Nanostructures of zinc oxide. Mater Today 7:26–33

    Article  CAS  Google Scholar 

  • White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Xie J, Lee JY, Wang DIC, Ting YP (2007) Silver nanoplates: from biological to biomimetic synthesis. ACS Nano 1:429–439

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Agricultural Innovation Project (NAIP), Indian Council of Agricultural Research (ICAR) through its sub-project entitled “Nano-technology for Enhanced Utilization of Native Phosphorus by Plants and Higher Moisture Retention in Arid Soils” Code number “NAIP/C4/C-2032.” Facilities provided by Electron Microscopy & Nanoscience Laboratory, Punjab Agricultural University, Ludhiana are gratefully acknowledged. Navin Jain thanks the Council of Scientific and Industrial Research, Government of India for providing a research fellowship. The authors are thankful to Dr. Ursula Kües for constructive and meaningful suggestions, which helped us to improve the manuscript up to the desired level.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitendra Panwar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jain, N., Bhargava, A., Tarafdar, J.C. et al. A biomimetic approach towards synthesis of zinc oxide nanoparticles. Appl Microbiol Biotechnol 97, 859–869 (2013). https://doi.org/10.1007/s00253-012-3934-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-3934-2

Keywords

  • Biomimetics
  • ZnO nanoparticles
  • Rhizosphere
  • Soil fungi
  • Metal tolerance
  • Aspergillus