Skip to main content
Log in

Improvements in ethanol production from xylose by mating recombinant xylose-fermenting Saccharomyces cerevisiae strains

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

To improve the ability of recombinant Saccharomyces cerevisiae strains to utilize the hemicellulose components of lignocellulosic feedstocks, the efficiency of xylose conversion to ethanol needs to be increased. In the present study, xylose-fermenting, haploid, yeast cells of the opposite mating type were hybridized to produce a diploid strain harboring two sets of xylose-assimilating genes encoding xylose reductase, xylitol dehydrogenase, and xylulokinase. The hybrid strain MN8140XX showed a 1.3- and 1.9-fold improvement in ethanol production compared to its parent strains MT8-1X405 and NBRC1440X, respectively. The rate of xylose consumption and ethanol production was also improved by the hybridization. This study revealed that the resulting improvements in fermentation ability arose due to chromosome doubling as well as the increase in the copy number of xylose assimilation genes. Moreover, compared to the parent strain, the MN8140XX strain exhibited higher ethanol production under elevated temperatures (38 °C) and acidic conditions (pH 3.8). Thus, the simple hybridization technique facilitated an increase in the xylose fermentation activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Banat IM, Nigam P, Singh D, Marchant R, McHale AP (1998) Ethanol production at elevated temperatures and alcohol concentrations: Part I—yeasts in general. World J Microbiol Biotechnol 14:809–821

    Article  CAS  Google Scholar 

  • Bruinenberg PM, Debot PH, van Dijken JP, Scheffers WA (1983) The role of redox balances in the anaerobic fermentation of xylose by yeasts. Eur J Appl Microbiol Biotechnol 18:287–292

    Article  CAS  Google Scholar 

  • de Godoy LMF, Olsen JV, Cox J, Nielsen ML, Hubner NC, Fröhlich F, Walther TC, Mann M (2008) Comprehensive mass-spectrometry based proteome quantification of haploid versus diploid yeast. Nature 455:1251–1255

    Article  Google Scholar 

  • Ding MZ, Li BZ, Cheng JS, Yuan YJ (2010) Metabolome analysis of differential responses of diploid and haploid yeast to ethanol stress. OMICS 14:553–561

    Article  CAS  Google Scholar 

  • Eliasson A, Christensson C, Wahlbom CF, Hahn-Hägerdal B (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium. Appl Environ Microbiol 66:3381–3386

    Article  CAS  Google Scholar 

  • Elion EA (2000) Pheromone response, mating and cell biology. Curr Opin Microbiol 3:573–581

    Article  CAS  Google Scholar 

  • Fonseca GG, Heinzle E, Wittmann C, Gombert AK (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79:339–354

    Article  CAS  Google Scholar 

  • Garay-Arroyo A, Covarrubias AA, Clark I, Niño I, Gosset G, Martinez A (2004) Response to different environmental stress conditions of industrial and laboratory Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 63:734–741

    Article  CAS  Google Scholar 

  • Hashimoto S, Aritomi K, Minohara T, Nishizawa Y, Hoshida H, Kashiwagi S, Akada R (2006) Direct mating between diploid sake strains of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 69:689–696

    Article  CAS  Google Scholar 

  • Hasunuma T, Sanda T, Yamada R, Yoshimura K, Ishii J, Kondo A (2011) Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microb Cell Fact 10:2

    Article  CAS  Google Scholar 

  • Higgins VJ, Bell PJL, Dawes IW, Attfield PA (2001) Generation of a novel Saccharomyces cerevisiae strain that exhibits strong maltose utilization and hyperosmotic resistance using nonrecombinant techniques. Appl Environ Microbiol 67:4346–4348

    Article  CAS  Google Scholar 

  • Katahira S, Mizuike A, Fukuda H, Kondo A (2006) Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl Microbiol Biotechnol 72:1136–1143

    Article  CAS  Google Scholar 

  • Kötter P, Ciriacy M (1993) Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38:776–783

    Article  Google Scholar 

  • Leu JY, Murray AW (2006) Experimental evolution of mating discrimination in budding yeast. Curr Biol 16:280–286

    Article  CAS  Google Scholar 

  • Li BZ, Cheng JS, Ding MZ, Yuan YJ (2010) Transcriptome analysis of differential responses of diploid and haploid yeast to ethanol stress. J Biotechnol 148:194–203

    Article  CAS  Google Scholar 

  • Martin C, Jönsson LJ (2003) Comparison of the resistance of industrial and laboratory strains of Saccharomyces and Zygosaccharomyces to lignocellulose-derived fermentation inhibitors. Enzyme Microb Technol 32:386–395

    Article  CAS  Google Scholar 

  • Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 72:379–412

    Article  CAS  Google Scholar 

  • Pasha C, Kuhad RC, Rao LV (2007) Strain improvement of thermotolerant Saccharomyces cerevisiae VS3 strain for better utilization of lignocellulosic substrates. J Appl Microbiol 103:1480–1489

    Article  CAS  Google Scholar 

  • Runquist D, Fonseca C, Radstrom P, Spencer-Martins I, Hahn-Hägerdal B (2009) Expression of Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl Microbiol Biotechnol 82:123–130

    Article  CAS  Google Scholar 

  • Saloheimo A, Rauta J, Stasyk OV, Sibirny AA, Pentillä M, Ruohonen L (2007) Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl Microbiol Biotechnol 70:6816–6825

    Google Scholar 

  • Tajima M, Nogi Y, Fukasawa T (1985) Primary structure of the Saccharomyces cerevisiae GAL7 gene. Yeast 1:67–77

    Article  CAS  Google Scholar 

  • van Vleet JH, Jeffries TW (2009) Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol 20:300–306

    Article  Google Scholar 

  • Yamada R, Tanaka T, Ogino C, Kondo A (2010a) Gene copy number and polyploidy on products formation in yeast. Appl Microbiol Biotechnol 88:849–857

    Article  CAS  Google Scholar 

  • Yamada R, Tanaka T, Ogino C, Kondo A (2010b) Novel strategy for yeast construction using δ-integration and cell fusion to efficiently produced ethanol from raw starch. Appl Microbiol Biotechnol 85:1491–1498

    Article  CAS  Google Scholar 

  • Yan F, Bai F, Tian S, Zhang J, Zhang Z, Yang X (2009) Strain construction for ethanol production from dilute-acid lignocellulosic hydrolysate. Appl Biochem Biotechnol 157:473–482

    Article  CAS  Google Scholar 

  • Yoshida S, Imoto J, Minato T, Oouchi R, Sugihara M, Imai T, Ishiguro T, Mizutani S, Tomita M, Soga T, Yoshimoto H (2008) Development of bottom-fermenting Saccharomyces strains that produce high SO2 levels, using integrated metabolome and transcriptome analysis. Appl Environ Microbiol 74:2787–2796

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms. Yoshimi Hori for technical assistance. This work has been supported by the Project P07015 administered by the New Energy and Industrial Technology Development Organization (NEDO) under the sponsorship of the Ministry of Economy, Trade, and Industry (METI) of Japan. This work was also supported by Grants-in-Aid for Young Scientists (B) to TH from the Ministry of Education, Culture, Sports, and Technology (MEXT) of Japan and a Special Coordination Funds for Promoting Science and Technology, Creation of Innovative Centers for Advanced Interdisciplinary Research Areas (Innovative Bioproduction Kobe), MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Kondo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 60 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, H., Suyama, H., Yamada, R. et al. Improvements in ethanol production from xylose by mating recombinant xylose-fermenting Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 94, 1585–1592 (2012). https://doi.org/10.1007/s00253-012-3914-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-3914-6

Keywords

Navigation