Skip to main content
Log in

Completing the series of BVMOs involved in camphor metabolism of Pseudomonas putida NCIMB 10007 by identification of the two missing genes, their functional expression in E. coli, and biochemical characterization

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The camphor-degrading Baeyer–Villiger monooxygenases (BVMOs) from Pseudomonas putida NCIMB 10007 have been of interest for over 40 years. So far the FMN- and NADH-dependent type II BVMO 3,6-diketocamphane 1,6-monooxygenase (3,6-DKCMO) and the FAD- and NADPH-dependent type I BVMO 2-oxo-∆3-4,5,5-trimethylcyclopentenylacetyl-CoA monooxygenase (OTEMO) have not been entirely studied, since it was not possible to produce those enzymes in satisfactory amounts and purity. In this study, we were able to clone and recombinantly express both enzymes and subsequently use them as biocatalysts for various mono- and bicyclic ketones. Full conversion could be reached with both enzymes towards (±)-cis-bicyclo[3.2.0]hept-2-en-6-one and with 3,6-DKCMO towards (−)-camphor. Further OTEMO gave full conversion with norcamphor. OTEMO was found to have a pH optimum of 9 and a temperature optimum of 20 °C and converted (±)-cis-bicyclo[3.2.0]hept-2-en-6-one with a k cat/K M value of 49.3 mM−1 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adger B, Bes MT, Grogan G, McCague R, Pedragosa-moreau S, Roberts SM, Villa R, Wan PWH, Willetts AJ (1995) Application of enzymic Baeyer-Villiger Oxidations of 2-substituted cycloalkanones to the total synthesis of (R)-(+)-lipoic acid. J Chem Soc, Chem Commun 1563–1564

  • Adger B, Bes MT, Grogan G, McCague R, Pedragosa-Moreau S, Roberts SM, Villa R, Wan PW, Willetts AJ (1997) The synthesis of (R)-(+)-lipoic acid using a monooxygenase-catalysed biotransformation as the key step. Bioorg Med Chem 5:253–261

    Article  CAS  Google Scholar 

  • Bradshaw WH, Conrad HE, Corey EJ, Gunsalus IC (1959) Microbiological degradation of (+)-camphor. J Am Chem Soc 4492:5507–5507

    Google Scholar 

  • Chung CT, Niemela SL, Miller RH (1989) One step preparation of competent Escherichia coli—transformation and storage of bacterial cells in same solution. Proc Natl Acad Sci USA 86:2172–2175

    Article  CAS  Google Scholar 

  • Conrad HE, DuBus R, Gunsalus IC, York N (1961) An enzyme system for cyclic ketone lactonization. Biochem Bioph Res Comm 6:293–297

    Article  CAS  Google Scholar 

  • Conrad HE, DuBus R, Namvedt M, Gunsalus IC (1965) Mixed function oxidations II: separation and propertiers of the enzymes catalyzing camphor lactonization. J Biol Chem 240:495–503

    CAS  Google Scholar 

  • Fraaije MW, Kamerbeek NM, van Berkel WJH, Janssen DB (2002) Identification of a Baeyer–Villiger monooxygenase sequence motif. FEBS Lett 518:43–47

    Article  CAS  Google Scholar 

  • Fraaije MW, Wu J, Heuts DPHM, van Hellemond EW, Spelberg JHL, Janssen DB (2005) Discovery of a thermostable Baeyer–Villiger monooxygenase by genome mining. Appl Microbiol Biotechnol 66:393–400

    Article  CAS  Google Scholar 

  • Gagnon R, Grogan G, Levitt MS, Roberts SM, Wan PWH, Willetts AJ (1994) Biological Baeyer-Villiger oxidation of some monocyclic and bicyclic ketones using monooxygenases from Acinetobacter calcoaceticus NCIMB 9871 and Pseudomonas putida NCIMB 10007. J Chem Soc Perkin Trans 2537–2543

  • Gagnon R, Grogan G, Groussain E, Pedragosa-Moreau S, Richardson PF, Roberts SM, Willetts AJ, Alphand V, Lebreton J, Furstoss R (1995a) Oxidation of some prochiral 3-substituted cyclobutanones using monooxygenase enzymes: a single-step method for the synthesis of optically enriched 3-substituted γ-lactones. J Chem Soc Perkin Trans 2527–2528

  • Gagnon R, Grogan G, Roberts SM, Villa R, Willetts AJ (1995b) Enzymatic Baeyer–Villiger oxidations of some bicyclo[2.2.1]heptan-2-ones using monooxygenases from Pseudomonas putida NCIMB 10007: Enantioselective preparation of a precursor of azadirachtin. J Chem Soc Perkin Trans 1505–1511

  • Grogan G, Roberts SM, Wan PWH, Willetts AJ (1993a) Camphor grown Pseudomonas putida, a multifunctional biocatalyst for undertaking Baeyer–Villiger monooxygenase-dependent biotransformations. Biotechnol Lett 15:913–918

    Article  CAS  Google Scholar 

  • Grogan G, Roberts SM, Willetts AJ (1993b) Some Baeyer–Villiger oxidations using a monooxygenase enzyme from Pseudomonas putida NCIMB 10007. J Chem Soc Chem Comm 699–699

  • Hartline RA, Gunsalus IC (1971) Induction specificity and catabolite repression of the early enzymes in camphor degradation by Pseudomonas putida. J Bacteriol 106:468–478

    CAS  Google Scholar 

  • Huson D, Richter D, Rausch C, Dezulian T, Franz M, Rupp R (2007) Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinform 8:460

    Article  Google Scholar 

  • Iwaki H, Hasegawa Y, Wang S, Kayser MM, Lau PCK (2002) Cloning and characterization of a gene cluster involved in cyclopentanol metabolism in Comamonas sp. strain NCIMB 9872 and biotransformations effected by Escherichia coli-expressed cyclopentanone. Appl Environ Microbiol 68:5671–5684

    Article  CAS  Google Scholar 

  • Jones KH, Smith RT, Trudgill PW (1993) Diketocamphane enantiomer-specific ‘Baeyer–Villiger’ monooxygenases from camphor-grown Pseudomonas putida ATCC 17453. J Gen Microbiol 139:797–805

    Article  CAS  Google Scholar 

  • Kadow M, Saß S, Schmidt M, Bornscheuer UT (2011) Recombinant expression and purification of the the camphor metabolizing Pseudomonas putida strain NCIMB 10007. AMB Express 1:13. doi:10.1186/2191-0855-1-13

    Article  Google Scholar 

  • Kamerbeek NM, Moonen MJH, van der Ven JGM, van Berkel WJH, Fraaije MW, Janssen DB (2001) 4-Hydroxyacetophenone monooxygenase from Pseudomonas fluorescens ACB. Eur J Biochem 268:2547–2557

    Article  CAS  Google Scholar 

  • Koga H, Yamaguchi E, Matsunaga K, Aramaki H, Horiuchi T (1989) Cloning and nucleotide sequences of NADH-putidaredoxin reductase gene (camA) and putidaredoxin gene (camB) involved in cytochrome P-450cam hydroxylase of Pseudomonas putida. J Biochem 106:831–836

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  Google Scholar 

  • Leipold F, Wardenga R, Bornscheuer UT (2011) Cloning, expression and characterization of a eukaryotic cycloalkanone monooxygenase from Cylindrocarpon radicicola ATCC 11011. Appl Microbiol Biotechnol. doi:10.1007/s00253-011-3670-z

  • Leisch H, Morley K, Lau PCK (2011) Baeyer–Villiger monooxygenases: more than just green chemistry. Chem Rev 111:4165–4222

    Article  CAS  Google Scholar 

  • McGhie EJ, Isupov MN, Schröder E, Littlechild JA (1996) Crystallization and preliminary X-ray diffraction studies of the oxygenating subunit of 3,6-monooxygenase from Pseudomonas putida. Biochem Soc Transact Acta Cryst D54:1035–1038

    Google Scholar 

  • Meinwald J, Frauenglass (1960) The Baeyer–Villiger oxidation of bicyclic ketones. J Am Chem Soc 82:5235–5239

    Article  CAS  Google Scholar 

  • Morii S, Sawamoto S, Yamauchi Y, Miyamoto M, Iwami M, Itagaki E (1999) Steroid monooxygenase of Rhodococcus rhodochrous: sequencing of the genomic DNA, and hyperexpression, purification, and characterization of the recombinant enzyme. J Biochem 126:1026–1032

    Article  Google Scholar 

  • Ougham HJ, Taylor DG, Trudgill PW (1983) Camphor revisited: Involvement of a unique monooxygenase in metabolism of 2-oxo-delta 3-4,5,5-trimethylcyclopentenylacetic acid by Pseudomonas putida. J Bacteriol 153:140–152

    CAS  Google Scholar 

  • Pilhofer M, Bauer AP, Schrallhammer M, Richter L, Ludwig W, Schleifer K-H, Petroni G (2007) Characterization of bacterial operons consisting of two tubulins and a kinesin-like gene by the novel two-step gene walking method. Nucl Acids Res 35:e135

    Article  Google Scholar 

  • Rehdorf J, Zimmer CL, Bornscheuer UT (2009) Cloning, expression, characterization, and biocatalytic investigation of the 4-hydroxyacetophenone monooxygenase from Pseudomonas putida JD1. Appl Environ Microb 75:3106–3114

    Article  CAS  Google Scholar 

  • Rheinwald JG, Chakrabarty AM, Gunsalus IC (1973) A transmissible plasmid controlling camphor oxidation in Pseudomonas putida. P Natl Acad Sci USA 70:885–889

    Article  CAS  Google Scholar 

  • Taylor DG, Trudgill PW (1986) Camphor revisited: Studies of 2,5-diketocamphane 1,2-monooxygenase from Pseudomonas putida ATCC 17453. J Bacteriol 165:489–497

    CAS  Google Scholar 

  • Unger BP, Gunsalus RP, Sligar SG (1986) Nucleotide sequence of the P. putida cytochrome P-450cam gene and its expression in Escherichia coli. J Biol Chem 261:1158–1163

    CAS  Google Scholar 

  • Van der Werf MJ, Swarts HJ, Bont JAMD (1999) Rhodococcus erythropolis DCL14 contains a novel degradation pathway for limonene. Appl Environ Microbiol 65:2092–2120

    Google Scholar 

  • Villa R (1997) Oxidations by microbial NADH plus FMN-dependent luciferases from Photobacterium phosphoreum and Vibrio fischeri. J Mol Catal B: Enzym 2:193–197

    Article  CAS  Google Scholar 

  • Voelker A, Kirschner A, Bornscheuer UT, Altenbuchner J (2008) Functional expression, purification, and characterization of the recombinant Baeyer–Villiger monooxygenase MekA from Pseudomonas veronii MEK700. Appl Microb Biotechnol 77:1251–1260

    Article  CAS  Google Scholar 

  • Willetts A (1997) Structural studies and synthetic applications of Baeyer–Villiger monooxygenases. Trends Biotechnol 15:55–62

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Deutsche Bundesstiftung Umwelt (DBU, Osnabrück, Germany, Grant No. AZ13234) for the financial support and to Ina Menyes for the assistance in the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe T. Bornscheuer.

Additional information

Maria Kadow and Kathleen Loschinski equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadow, M., Loschinski, K., Saß, S. et al. Completing the series of BVMOs involved in camphor metabolism of Pseudomonas putida NCIMB 10007 by identification of the two missing genes, their functional expression in E. coli, and biochemical characterization. Appl Microbiol Biotechnol 96, 419–429 (2012). https://doi.org/10.1007/s00253-011-3859-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3859-1

Keywords

Navigation