Skip to main content
Log in

Expression of a library of fungal β-glucosidases in Saccharomyces cerevisiae for the development of a biomass fermenting strain

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Converting cellulosic biomass to ethanol involves the enzymatic hydrolysis of cellulose and the fermentation of the resulting glucose. The yeast Saccharomyces cerevisiae is naturally ethanologenic, but lacks the enzymes necessary to degrade cellulose to glucose. Towards the goal of engineering S. cerevisiae for hydrolysis of and ethanol production from cellulose, 35 fungal β-glucosidases (BGL) from the BGL1 and BGL5 families were screened for their ability to be functionally expressed and displayed on the cell surface. Activity assays revealed that the BGL families had different substrate specificities, with only the BGL1s displaying activity on their natural substrate, cellobiose. However, growth on cellobiose showed no correlation between the specific growth rates, the final cell titer, and the level of BGL1 activity that was expressed. One of the BGLs that expressed the highest levels of cellobiase activity, Aspergillus niger BGL1 (Anig-Bgl101), was then used for further studies directed at developing an efficient cellobiose-fermenting strain. Expressing Anig-Bgl101 from a plasmid yielded higher ethanol levels when secreted into the medium rather than anchored to the cell surface. In contrast, ethanol yields from anchored and secreted Anig-Bgl101 were comparable when integrated on the chromosome. Flow cytometry analysis revealed that chromosomal integration of Anig-Bgl101 resulted in a higher percentage of the cell population that displayed the enzyme but with overall lower expression levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almeida JRM, Modig T, Petersson A, Hahn-Hägerdal B, Lidén G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82:340–349

    Article  CAS  Google Scholar 

  • Araujo EF, Barros EG, Caldas RA, Silva DO (1983) Beta-glucosidase activity of a thermophilic cellulolytic fungus, Humicola sp. Biotechnol Lett 5:781–784

    Article  CAS  Google Scholar 

  • Breinig F, Schmitt MJ (2002) Spacer-elongated cell wall fusion proteins improve cell surface expression in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 58:637–44

    Article  CAS  Google Scholar 

  • Calsavara L, De Moraes F, Zanin G (2001) Comparison of catalytic properties of free and immobilized cellobiase Novozym 188. Appl Biochem Biotechnol 91–93:615–626

    Article  Google Scholar 

  • Dan S, Marton I, Dekel M, Bravdo B-A, He S, Withers SG, Shoseyov O (2000) Cloning, expression, characterization, and nucleophile identification of family 3, Aspergillus niger β-glucosidase. J Biol Chem 275:4973–4980

    Article  CAS  Google Scholar 

  • Den Haan R, Rose SH, Lynd LR, Van Zyl WH (2007) Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab Eng 9:87–94

    Article  Google Scholar 

  • Du Plessis L, Rose SH, Van Zyl WH (2010) Exploring improved endoglucanase expression in Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 86:1503–1511

    Article  CAS  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP, and related tools. Nat Protoc 2:953–971

    Article  CAS  Google Scholar 

  • Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A (2004) Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70:1207–1212

    Article  CAS  Google Scholar 

  • Galazka JM, Tian CG, Beeson WT, Martinez B, Glass NL, Cate JHD (2010) Cellodextrin transport in yeast for improved biofuel production. Science 330:84–86

    Article  CAS  Google Scholar 

  • Gietz RD, Schiestl RH (1995) Transforming yeast with DNA. Meth Mol Cell Biol 5:255–269

    Google Scholar 

  • Goujon M, McWilliam H, Li WZ, Valentin F, Squizzato S, Paern J, Lopez R (2010) A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 38:W695–W699

    Article  CAS  Google Scholar 

  • Guo ZP, Zhang L, Ding ZY, Gu ZH, Shi GY (2011) Development of an industrial ethanol-producing yeast strain for efficient utilization of cellobiose. Enzyme Microb Tech 49:105–112

    Article  CAS  Google Scholar 

  • Hamilton R, Watanabe CK, de Boer HA (1987) Compilation and comparison of the sequence context around the AUG startcodons in Saccharomyces cerevisiae mrnas. Nucleic Acids Res 15:3581–3593

    Article  CAS  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  CAS  Google Scholar 

  • Harju S, Fedosyuk H, Peterson KR (2004) Rapid isolation of yeast genomic DNA: Bust n’ grab. BMC Biotechnol 4:8

    Article  Google Scholar 

  • Henrissat B, Driguez H, Viet C, Schülein M (1985) Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Nat Biotechnol 3:722–726

    Article  CAS  Google Scholar 

  • Himmel ME, Adney WS, Fox JW, Mitchell DJ, Baker JO (1993) Isolation and characterization of two forms of β-D-glucosidase from Aspergillus niger. Appl Biochem Biotechnol 39–40:213–25

    Article  Google Scholar 

  • Hoh YK, Yeoh HH, Tan TK (1992) Properties of β-glucosidase purified from Aspergillus niger mutants USDB 0827 and USDB 0828. Appl Microbiol Biotechnol 37:590–593

    Article  CAS  Google Scholar 

  • Jeon E, Hyeon JE, Eun LS, Park BS, Kim SW, Lee J, Han SO (2009a) Cellulosic alcoholic fermentation using recombinant Saccharomyces cerevisiae engineered for the production of Clostridium cellulovorans endoglucanase and Saccharomycopsis fibuligera β-glucosidase. FEMS Microbiol Lett 301:130–136

    Article  CAS  Google Scholar 

  • Jeon E, Hyeon JE, Suh DJ, Suh YW, Kim SW, Song KH, Han SO (2009b) Production of cellulosic ethanol in Saccharomyces cerevisiae heterologous expressing Clostridium thermocellum endoglucanase and Saccharomycopsis fibuligera β-glucosidase genes. Mol Cells 28:369–373

    Article  CAS  Google Scholar 

  • Kondo A, Ueda M (2004) Yeast cell-surface display—applications of molecular display. Appl Microbiol Biotechnol 64:28–40

    Article  CAS  Google Scholar 

  • Kotaka A, Bando H, Kaya M, Kato-Murai M, Kuroda K, Sahara H, Hata Y, Kondo A, Ueda M (2008) Direct ethanol production from barley β-glucan by sake yeast displaying Aspergillus oryzae β-glucosidase and endoglucanase. J Biosci Bioeng 105:622–627

    Article  CAS  Google Scholar 

  • Kotaka A, Sahara H, Kuroda K, Kondo A, Ueda M, Hata Y (2010) Enhancement of β-glucosidase activity on the cell-surface of sake yeast by disruption of SED1. J Biosci Bioeng 109:442–446

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2. Bioinformatics 23:2947–2948

    Article  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  Google Scholar 

  • Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–83

    Article  CAS  Google Scholar 

  • Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, Wyman CE (2008) How biotech can transform biofuels. Nature Biotechnol 26:169–172

    Article  CAS  Google Scholar 

  • Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Tasneem A, Thanki N, Yamashita RA, Zhang D, Zhang N, Bryant SH (2009) CDD: Specific functional annotation with the conserved domain database. Nucleic Acids Res 37:205–210

    Article  Google Scholar 

  • Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH (2011) CDD: A conserved domain database for the functional annotation of proteins. Nucleic Acids Res 39:D225–D229

    Article  Google Scholar 

  • Newman JR, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, DeRisi JL, Weissman JS (2006) Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441:840–6

    Article  CAS  Google Scholar 

  • Oliveira C, Teixeira JA, Lima N, Da Silva NA, Domingues L (2007) Development of stable flocculent Saccharomyces cerevisiae strain for continuous Aspergillus niger β-galactosidase production. J Biosci Bioeng 103:318–324

    Article  CAS  Google Scholar 

  • Pack SP, Park K, Yoo YJ (2002) Enhancement of β-glucosidase stability and cellobiose-usage using surface-engineered recombinant Saccharomyces cerevisiae in ethanol production. Biotechnol Lett 24:1919–1925

    Article  CAS  Google Scholar 

  • Parry NJ, Beever DE, Owen E, Vandenberghe I, Van Beeumen J, Bhat MK (2001) Biochemical characterization and mechanism of action of a thermostable β-glucosidase purified from Thermoascus aurantiacus. Biochem J 353:117–127

    Article  CAS  Google Scholar 

  • Riou C, Salmon JM, Vallier MJ, Gunata Z, Barre P (1998) Purification, characterization, and substrate specificity of a novel highly glucose-tolerant β-glucosidase from Aspergillus oryzae. Appl Environ Microbiol 64:3607–3614

    CAS  Google Scholar 

  • Romanos MA, Scorer CA, Clare JJ (1992) Foreign gene expression in yeast: a review. Yeast 8:423–488

    Article  CAS  Google Scholar 

  • Sakai A, Shimizu Y, Hishinuma F (1990) Integration of heterologous genes into the chromosome of Saccharomyces cerevisiae using a delta sequence of yeast retrotransposon Ty. Appl Microbiol Biotechnol 33:302–306

    Article  CAS  Google Scholar 

  • Seidle HF, Marten I, Shoseyov O, Huber RE (2004) Physical and kinetic properties of the family 3 β-glucosidase from Aspergillus niger which is important for cellulose breakdown. Protein J 23:11–23

    Article  CAS  Google Scholar 

  • Shibasaki S, Maeda H, Ueda M (2009) Molecular display technology using yeast-arming technology. Anal Sci 25:41–49

    Article  CAS  Google Scholar 

  • Sonderegger M, Jeppsson M, Hahn-Hägerdal B, Sauer U (2004) Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis. Appl Environ Microbiol 70:2307–2317

    Article  CAS  Google Scholar 

  • Tsai SL, Goyal G, Chen W (2010) Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production. Appl Environ Microbiol 76:7514–20

    Article  CAS  Google Scholar 

  • Van der Vaart JM, Te Biesebeke R, Chapman JW, Toschka HY, Klis FM, Verrips T (1997) Comparison of cell wall proteins of Saccharomyces cerevisiae as anchors for cell surface expression of heterologous proteins. Appl Environ Microbiol 63:615–620

    Google Scholar 

  • Van Hoek P, Van Dijken JP, Pronk JT (1998) Effect of specific growth rate on fermentative capacity of baker’s yeast. Appl Environ Microbiol 64:4226–4233

    Google Scholar 

  • Van Maris AJA, Winkler AA, Kuyper M, de Laat WTAM, Van Dijken JP, Pronk JT (2007) Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component. Adv Biochem Eng Biotechnol 108:179–204

    Google Scholar 

  • Van Rensburg P, Van Zyl WH, Pretorius IS (1998) Engineering yeast for efficient cellulose degradation. Yeast 14:67–76

    Article  Google Scholar 

  • Van Rooyen R, Hahn-Hägerdal B, La Grange DC, Van Zyl WH (2005) Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains. J Biotechnol 120:284–295

    Article  Google Scholar 

  • Visser W, Scheffers WA, Batenburg-Van der Vegte WH, Van Dijken JP (1990) Oxygen requirements of yeasts. Appl Environ Microbiol 56:3785–3792

    CAS  Google Scholar 

  • Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Bior 2:26–40

    Article  CAS  Google Scholar 

  • Zhang Z, Moo-Young M, Chisti Y (1996) Plasmid stability in recombinant Saccharomyces cerevisiae. Biotechnol Adv 14:401–435

    Article  CAS  Google Scholar 

  • Zhang L, Guo Z-P, Hong J-H, Ding Z-Y, Gao Z-Q, He Z-M, Shi G-Y (2011) Expressing β-glucosidase from Saccharomycopsis fibuligera in industrial ethanol producing yeast and evaluation of the expressing sufficiency. Ann Microbiol 61:1–6

    Google Scholar 

Download references

Acknowledgements

We would like to thank Kane LaRue for his useful insights into the manuscript. We are grateful to Danièle Gagné from the Institute for Research in Immunology and Cancer of the Université de Montréal for helping us with the flow cytometry experiments. This work was supported by research grants to V.J.J.M. and R.S. from the Natural Sciences and Engineering Research Council of Canada grant number NETGP 350246-07, the Fonds Québécois de la Recherche sur la Nature et les Technologies grant number 125961, Agriculture and Agri-Food Canada, grant number ABIP000159, and a Canada Research Chair to V.J.J.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent J. J. Martin.

Additional information

Caroline Wilde and Nicholas D. Gold shared first authorship.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM. 1

DOC 358 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilde, C., Gold, N.D., Bawa, N. et al. Expression of a library of fungal β-glucosidases in Saccharomyces cerevisiae for the development of a biomass fermenting strain. Appl Microbiol Biotechnol 95, 647–659 (2012). https://doi.org/10.1007/s00253-011-3788-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3788-z

Keywords