Skip to main content
Log in

Overexpression of the PHO84 gene causes heavy metal accumulation and induces Ire1p-dependent unfolded protein response in Saccharomyces cerevisiae cells

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Pho84p, the protein responsible for the high-affinity uptake and transport of inorganic phosphate across the plasma membrane, is also involved in the low-affinity uptake of heavy metals in the Saccharomyces cerevisiae cells. In the present study, the effect of PHO84 overexpression upon the heavy metal accumulation by yeast cells was investigated. As PHO84 overexpression triggered the Ire1p-dependent unfolded protein response, abundant plasma membrane Pho84p could be achieved only in ire1Δ cells. Under environmental surplus, PHO84 overexpression augmented the metal accumulation by the wild type, accumulation that was exacerbated by the IRE1 deletion. The pmr1Δ cells, lacking the gene that encodes the P-type ATPase ion pump that transports Ca2+ and Mn2+ into the Golgi, hyperaccumulated Mn2+ even from normal medium when overexpressing PHO84, a phenotype which is rather restricted to metal-hyperaccumulating plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amberg DC, Burke DJ, Strathern JN (2005) Methods in yeast genetics. A Cold Spring Harbor Laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 135–139

    Google Scholar 

  • Antebi A, Fink GR (1992) The yeast Ca2+-ATPase homologue, PMR1, is required for normal Golgi function and localizes in a novel Golgi-like distribution. Mol Biol Cell 3:633–654

    CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker AJM (2002) The use of tolerant plants and hyperaccumulators. In: Wong MH, Bradshaw AD (eds) Restoration and management of derelict land: modern approaches. World Scientific Publishing Co., Singapore, pp 138–148

    Google Scholar 

  • Borst-Pauwels GW (1981) Ion transport in yeast. Biochim Biophys Acta 650:88–127

    CAS  Google Scholar 

  • Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Bun-ya M, Nishimura M, Harashima S, Oshima Y (1991) The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter. Mol Cell Biol 11:3229–3238

    CAS  Google Scholar 

  • Bun-ya M, Shikata K, Nakade S, Yompakdee C, Harashima S, Oshima Y (1996) Two new genes, PHO86 and PHO87, involved in inorganic phosphate uptake in Saccharomyces cerevisiae. Curr Genet 29:344–351

    CAS  Google Scholar 

  • Cocs JS, Walter P (1996) A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 87:391–404

    Article  Google Scholar 

  • Culotta VC, Yang M, Hall MD (2005) Manganese transport and trafficking: lessons learned from Saccharomyces cerevisiae. Eukaryot Cell 4:1159–1165

    Article  CAS  Google Scholar 

  • Dürr G, Strayle J, Plemper R, Elbs S, Klee SK, Catty P, Wolf DH, Rudolph HK (1998) The medial-Golgi ion pump Pmr1 supplies the yeast secretory pathway with Ca2+ and Mn2+ required for glycosylation, sorting, and endoplasmic reticulum-associated protein degradation. Mol Biol Cell 9:1149–1162

    Google Scholar 

  • Eide DJ (2009) Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae. J Biol Chem 284:18565–18569

    Article  CAS  Google Scholar 

  • Farcasanu IC, Ohta N, Miyakawa T (1996) The fate of Mn ions inside the Saccharomyces cerevisiae cells seen by electronic paramagnetic resonance. Biosci Biotechnol Biochem 60:468–471

    Article  CAS  Google Scholar 

  • Feldmann H (2005) Yeast transport. In: Yeast molecular biology, a short compendium on basic features and novel aspects. Adolf-Butenandt-Institute, University of Munich, pp 10–17. http://biochemie.web.med.uni-muenchen.de/Yeast_Biol/

  • Fernando DR, Woodrow IE, Jaffré T, Dumontet V, Marshall AT, Baker AJM (2008) Foliar manganese accumulation by Maytenus founieri (Celastraceae) in its native New Caledonian habitats: populational variation and localization by X-ray microanalysis. New Phytol 177:178–185

    CAS  Google Scholar 

  • Fernando DR, Guymer G, Reeves RD, Woodrow IE, Baker AJ, Batianoff GN (2009) Foliar Mn accumulation in eastern Australian herbarium specimens: prospecting for ‘new’ Mn hyperaccumulators and potential applications in taxonomy. Ann Bot 103:931–939

    Article  CAS  Google Scholar 

  • Gifford S, Dunstan RH, O’Connor W, Koller CE, MacFarlane GR (2007) Aquatic zooremediation: deploying animals to remediate contaminated aquatic environments. Trends Biotechnol 25:60–65

    Article  CAS  Google Scholar 

  • Guthrie C, Fink GR (eds) (1991) Guide to yeast genetics and molecular biology. Academic, New York

    Google Scholar 

  • Jansen G, Wu C, Schade B, Thomas DY, Whiteway M (2005) Drag&Drop cloning in yeast. Gene 344:43–51

    Article  CAS  Google Scholar 

  • Jensen LT, Ajua-Alemanji M, Culotta VC (2003) The Saccharomyces cerevisiae high affinity phosphate transporter encoded by PHO84 also functions in manganese homeostasis. J Biol Chem 278:42036–42040

    Article  CAS  Google Scholar 

  • Kawahara T, Yanagi H, Yura T, Mori K (1997) Endoplasmic reticulum stress-induced mRNA splicing permits synthesis of transcription factor Hac1p/Ern4p that activates the unfolded protein response. Mol Biol Cell 8:1845–1862

    CAS  Google Scholar 

  • Kihn JC, Dassargues CM, Mestdagh MM (1988) Preliminary ESR studies of Mn(II) retention by the yeast Saccharomyces. Can J Microbiol 34:1230–1234

    Article  CAS  Google Scholar 

  • Kohno K (2010) Stress-sensing mechanisms in the unfolded protein response: similarities and differences between yeast and mammals. J Biochem 147:27–33

    Article  CAS  Google Scholar 

  • Lapinskas PJ, Cunningham KW, Liu XF, Fink GR, Culotta VC (1995) Mutations in PMR1 suppress oxidative damage in yeast lacking superoxide dismutase. Mol Cell Biol 15:1382–1388

    CAS  Google Scholar 

  • Lauer Júnior CM, Bonatto D, Mielniczki-Pereira AA, Schuch AZ, Dias JF, Yoneama ML, Pêgas Henriques JA (2008) The Pmr1 protein, the major yeast Ca2+-ATPase in the Golgi, regulates intracellular levels of the cadmium ion. FEMS Microbiol Lett 285:79–88

    Article  Google Scholar 

  • Machado MD, Santos MS, Gouveia C, Soares HM, Soares EV (2008) Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: the flocculation as a separation process. Bioresour Technol 99:2107–2115

    Article  CAS  Google Scholar 

  • Machado MD, Janssens S, Soares HM, Soares EV (2009) Removal of heavy metals using a brewar’s yeast strain of Saccharomyces cerevisiae: advantages of using dead biomass. J Appl Biotech 106:1792–1804

    CAS  Google Scholar 

  • Mandal D, Woolf TB, Rao R (2000) Manganese selectivity of pmr1, the yeast secretory pathway ion pump, is defined by residue Gln783 in transmembrane segment 6. Residue Asp778 is essential for cation transport. J Biol Chem 275:23933–23938

    Article  CAS  Google Scholar 

  • Massé E, Arguin M (2005) Ironing out the problem: new mechanisms of iron homeostasis. Trends Biochem Sci 30:462–468

    Article  Google Scholar 

  • Miller JP, Lo RS, Ben-Hur A, Desmarais C, Stagljar I, Stafford Noble W, Fields S (2005) Large-scale identification of yeast integral membrane protein interactions. Proc Natl Acad Sci U S A 102:12123–12128

    Article  CAS  Google Scholar 

  • Mori K, Sant A, Kohno K, Normington K, Gething MJ, Sambrook JF (1992) A 22 bp cis-acting element is necessary and sufficient for the induction of the yeast KAR2 (BiP) gene by unfolded proteins. EMBO J 11:2583–2593

    CAS  Google Scholar 

  • Nyren P, Nore BF, Baltzcheffsky M (1986) Studies on photosynthetic inorganic pyrophosphate formation in Rhodospirillum rubrum chromatophores. Biochim Biophys Acta 851:276–282

    Article  CAS  Google Scholar 

  • Ratherford JC, Bird AJ (2004) Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells. Eukaryot Cell 3:1–13

    Article  Google Scholar 

  • Reddi AR, Jensen LT, Culotta VC (2009) Manganese homeostasis in Saccharomyces cerevisiae. Chem Rev 109:4722–4732

    Article  CAS  Google Scholar 

  • Reeves RD (2006) Hyperaccumulation of trace elements by plants. In: Morel J-L, Echevarria G, Goncharova N (eds) Phytoremediation of metal contaminated soils. Springer, Berlin, pp 25–52

    Chapter  Google Scholar 

  • Rosenfeld L, Reddi AR, Leung E, Aranda K, Jensen LT, Culotta VC (2010) The effect of phosphate accumulation on metal ion homeostasis in Saccharomyces cerevisiae. J Biol Inorg Chem 15:1051–1062

    Article  CAS  Google Scholar 

  • Rudolph HK, Antebi A, Fink GR, Buckley CM, Dorman TE, LeVitre J, Davidow LS, Mao JI, Moir DT (1989) The yeast secretory pathway is perturbed by mutations in PMR1, a member of a Ca2+ ATPase family. Cell 58:133–145

    Article  CAS  Google Scholar 

  • Ruta L, Paraschivescu C, Matache M, Avramescu S, Farcasanu IC (2010) Removing heavy metals from synthetic effluents using “kamikaze” Saccharomyces cerevisiae cells. Appl Microbiol Biotechnol 85:763–771

    Article  CAS  Google Scholar 

  • Schiestl R, Gietz RD (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acid as carrier. Curr Genet 16:339–346

    Article  CAS  Google Scholar 

  • Sherman F (2002) Getting started with yeast. Methods Enzymol 350:3–41

    Article  CAS  Google Scholar 

  • Sherman F, Fink GR, Hicks JB (1986) Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sorin A, Rosas G, Rao R (1997) PMR1, a Ca2+-ATPase in yeast Golgi, has properties distinct from sarco/endoplasmic reticulum and plasma membrane calcium pumps. J Biol Chem 272:9895–9901

    Article  CAS  Google Scholar 

  • Takeda A (2003) Manganese action in brain function. Brain Res Rev 41:79–87

    Article  CAS  Google Scholar 

  • Van Ho A, Ward DM, Kaplan J (2002) Transition metal transport in yeast. Annu Rev Microbiol 56:237–261

    Article  Google Scholar 

  • Watanabe T, Ozaki N, Iwashita K, Fujii T, Iefuji H (2008) Breeding of wastewater treatment yeasts that accumulate high concentrations of phosphorus. Appl Microbiol Biotechnol 80:331–338

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Professor Kenji Kohno (Nara Institute of Science and Technology, Japan) for generously providing plasmid pCZY1. This work was supported by the Ministry of Education and Research of Romania through the grant-in-aid PNII Idei_965, 176/2007 and by the postdoctoral program POSDRU/89/1.5/S/60746, from the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ileana Cornelia Farcasanu.

Additional information

Augustin Minel Ofiteru and Lavinia Liliana Ruta contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ofiteru, A.M., Ruta, L.L., Rotaru, C. et al. Overexpression of the PHO84 gene causes heavy metal accumulation and induces Ire1p-dependent unfolded protein response in Saccharomyces cerevisiae cells. Appl Microbiol Biotechnol 94, 425–435 (2012). https://doi.org/10.1007/s00253-011-3784-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3784-3

Keywords

Navigation