Skip to main content
Log in

An isofenphos-methyl hydrolase (Imh) capable of hydrolyzing the P–O–Z moiety of organophosphorus pesticides containing an aryl or heterocyclic group

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Organophosphorus pesticide (OP) hydrolases play key roles in the degradation and decontamination of agricultural and household OPs and in the detoxification of chemical warfare agents. In this study, an isofenphos-methyl hydrolase gene (imh) was cloned from the isocarbophos-degrading strain of Arthrobacter sp. scl-2 using the polymerase chain reaction method. Isofenphos-methyl hydrolase (Imh) showed 98% sequence identity with the isofenphos hydrolase from Arthrobacter sp. strain B-5. Imh was highly expressed in Escherichia coli BL21 (DE3), and the His6-tagged Imh was purified (1.7 mg/ml) with a specific activity of 14.35 U/mg for the substrate isofenphos-methyl. The molecular mass of the denatured Imh is about 44 kDa, and the isoelectric point (pI) value was estimated to be 3.4. The optimal pH and temperature for hydrolysis of isofenphos-methyl were pH 8.0 and 35 °C, respectively. The secondary structure of Imh shows that Imh is a metallo-dependent hydrolase, and it was found that Imh was completely inhibited by the metalloprotease inhibitor 1,10-phenanthroline (0.5 mM), and the catalytic activity was restored by the subsequent addition of Zn2+. Interestingly, Imh had a relatively broader substrate specificity and was capable of hydrolyzing 12 of the tested oxon and thion OPs with the P–O–Z moiety instead of the P–S(C)–Z moiety. Furthermore, it was found that the existence of an aryl or heterocyclic group in the leaving group (Z) is also important in determining the substrate specificity. Among all the substrates hydrolyzed by Imh, it was assumed that Imh preferred P–O–Z substrates still with a phosphamide bond (P–N), such as isofenphos-methyl, isofenphos, isocarbophos, and butamifos. The newly characterized Imh has a great potential for use in the decontamination and detoxification of agricultural and household OPs and is a good candidate for the study of the catalytic mechanism and substrate specificity of OP hydrolases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aubert SD, Li Y, Raushel FM (2004) Mechanism for the hydrolysis of organophosphates by the bacterial phosphotriesterase. Biochem 43(19):5707–5715

    Article  CAS  Google Scholar 

  • Benning MM, Hong SB, Raushel FM, Holden HM (2000) The binding of substrate analogs to phosphotriesterase. J Biol Chem 275(39):30550–30560

    Article  Google Scholar 

  • Cheng TC, Harvey SP, Stroup AN (1993) Purification and properties of a highly active organophosphorus acid anhydrolase from Alteromonas undina. Appl Environ Microbiol 59(9):3138–3140

    CAS  Google Scholar 

  • Cheng T, Harvey SP, Chen GL (1996) Cloning and expression of a gene encoding a bacterial enzyme for decontamination of organophosphorus nerve agents and nucleotide sequence of the enzyme. Appl Environ Microbiol 62(5):1636–1641

    CAS  Google Scholar 

  • Chen-Goodspeed M, Sogorb MA, Wu F, Raushel FM (2001) Enhancement, relaxation, and reversal of the stereoselectivity for phosphotriesterase by rational evolution of active site residues. Biochem 40(5):1332–1339

    Article  CAS  Google Scholar 

  • Cisar JL, Snyder GH (2000) Mobility and persistence of pesticides applied to a US Golf Association Green—pesticides in percolate, thatch, soil, and clippings and approaches to reduce fenamiphos and fenamiphos metabolite leaching. Fate Manag Turfgrass Chem 743:106–126

    Article  CAS  Google Scholar 

  • Cuff JA, Clamp ME, Siddiqui AS, Finlay M, Barton GJ (1998) JPred: a consensus secondary structure prediction server. Bioinformatics 14(10):892–893

    Article  CAS  Google Scholar 

  • Cui Z, Li S, Fu G (2001) Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene. Appl Environ Microbiol 67(10):4922–4925

    Article  CAS  Google Scholar 

  • DeFrank JJ, Cheng TC (1991) Purification and properties of an organophosphorus acid anhydrase from a halophilic bacterial isolate. J Bacteriol 173(6):1938

    CAS  Google Scholar 

  • Di Sioudi BD, Miller CE, Lai K, Grimsley JK, Wild JR (1999) Rational design of organophosphorus hydrolase for altered substrate specificities. Chem Biol Interact 119:211–223

    Article  Google Scholar 

  • Dumas DP, Caldwell SR, Wild JR, Raushel F (1989) Purification and properties of the phosphotriesterase from Pseudomonas diminuta. J Biol Chem 264(33):19659–19665

    CAS  Google Scholar 

  • Fu Q, Yang R, Wang Z, She J, Li H, Liu P (2008) Field residue decline study of malathion in citrus and soil. Chinese J Pest Sci 10(4):487–490

    CAS  Google Scholar 

  • Gopal S, Rastogi V, Ashman W, Mulbry W (2000) Mutagenesis of organophosphorus hydrolase to enhance hydrolysis of the nerve agent VX. Biochem Biophy Res Co 279(2):516–519

    Article  CAS  Google Scholar 

  • Gui WJ, Wang ST, Guo YR, Zhu GN (2008) Development of a one-step strip for the detection of triazophos residues in environmental samples. Anal Biochem 377(2):202–208

    Article  CAS  Google Scholar 

  • Hong SB, Raushel FM (1999) Stereochemical constraints on the substrate specificity of phosphotriesterase. Biochem 38(4):1159–1165

    Article  CAS  Google Scholar 

  • Hong Q, Zhang Z, Hong Y, Li S (2007) A microcosm study on bioremediation of fenitrothion-contaminated soil using Burkholderia sp. FDS-1. Int Biodeterior Biodegrad 59:55–61

    Article  CAS  Google Scholar 

  • Horne I, Sutherland TD, Harcourt RL, Russell RJ, Oakeshott JG (2002a) Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate. Appl Environ Microbiol 68(7):3371–3376

    Article  CAS  Google Scholar 

  • Horne I, Sutherland TD, Oakeshott JG, Russell RJ (2002b) Cloning and expression of the phosphotriesterase gene hocA from Pseudomonas monteilii C11. Microbiol 148(9):2687–2695

    CAS  Google Scholar 

  • Horne I, Qiu X, Russell RJ, Oakeshott JG (2003) The phosphotriesterase gene opdA in Agrobacterium radiobacter P230 is transposable. FEMS Microbiol Lett 222(1):1–8

    Article  CAS  Google Scholar 

  • Jackson CJ, Weir K, Herlt A, Khurana J, Sutherland TD, Horne I, Easton C, Russell RJ, Scott C, Oakeshott JG (2009) Structure-based rational design of a phosphotriesterase. Appl Environ Microbiol 5153–5156

  • Jonsson C, Paraiba L, Mendoza M, Sabater C, Carrasco J (2001) Bioconcentration of the insecticide pyridaphenthion by the green algae Chlorella saccharophila. Chemosphere 43(3):321–325

    Article  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5(2):150–163

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  Google Scholar 

  • Li X, He J, Li S (2007) Isolation of a chlorpyrifos-degrading bacterium, Sphingomonas sp. strain Dsp-2, and cloning of the mpd gene. Res Microbiol 158:143–149

    Article  CAS  Google Scholar 

  • Li R, Guo X, Chen K, Zhu J, Li S, Jiang J (2009) Isolation of an isocarbophos-degrading strain of Arthrobacter sp. scl-2 and identification of the degradation pathway. J Microbiol Biotechnol 19(11):1439–1446

    CAS  Google Scholar 

  • Li R, Zheng J, Wang R, Song Y, Chen Q, Yang X, Li S, Jiang J (2010) Biochemical degradation pathway of dimethoate by Paracoccus sp. Lgjj-3 isolated from treatment wastewater. Int Biodeterior Biodegrad 64:51–57

    Article  CAS  Google Scholar 

  • Li R, Wang R, Yang X, Chen Q, Song Y, Li S, Jiang J (2011) Biodegradation of pyridaphenthion, fenamiphos and profenofos by Arthrobacter sp. scl-2 and identification of the metabolites. China Environ Sci 31(7):1178–1185

    CAS  Google Scholar 

  • Liu YH, Chung YC, Xiong Y (2001) Purification and characterization of a dimethoate-degrading enzyme of Aspergillus niger ZHY256, isolated from sewage. Appl Environ Microbiol 67(8):3746–3479

    Article  CAS  Google Scholar 

  • Liu H, Zhang JJ, Wang SJ, Zhang XE, Zhou NY (2005) Plasmid-borne catabolism of methyl parathion and p-nitrophenol in Pseudomonas sp. strain WBC-3. Biochem Biophy Res Co 334(4):1107–1114

    Article  CAS  Google Scholar 

  • McConnell R, Pacheco F, Wahlberg K, Klein W, Malespin O, Magnotti R, Akerblom M, Murray D (1999) Subclinical health effects of environmental pesticide contamination in a developing country: cholinesterase depression in children. Environ Res 81(2):87–91

    Article  CAS  Google Scholar 

  • Mulbry WW (1992) The aryldialkylphosphatase-encoding gene-Adpb from Nocardia sp. strain-B-1—cloning, sequencing and expression in Escherichia coli. Gene 121(1):149–153

    Article  CAS  Google Scholar 

  • Mulbry WW, Karns JS (1989) Parathion hydrolase specified by the Flavobacterium opd gene: relationship between the gene and protein. J Bacteriol 171(12):6740–6746

    CAS  Google Scholar 

  • Munnecke DM (1976) Enzymatic hydrolysis of organophosphate insecticides, a possible pesticide disposal method. Appl Environ Microbiol 32(1):7–13

    CAS  Google Scholar 

  • Ohshiro K, Ono T, Hoshino T, Uchiyama T (1997) Characterization of isofenphos hydrolases from Arthrobacter sp. strain B-5. J Ferment Bioeng 83(3):238–245

    Article  CAS  Google Scholar 

  • Ohshiro K, Kakuta T, Nikaidou N, Watanabe T, Uchiyama T (1999) Molecular cloning and nucleotide sequencing of organophosphorus insecticide hydrolase gene from Arthrobacter sp. strain B-5. J Biosci Bioeng 87(4):531–534

    Article  CAS  Google Scholar 

  • Omburo GA, Kuo JM, Mullins LS, Raushel F (1992) Characterization of the zinc binding site of bacterial phosphotriesterase. J Biol Chem 267(19):13278–13283

    CAS  Google Scholar 

  • Porzio E, Merone L, Mandrich L, Rossi M, Manco G (2007) A new phosphotriesterase from Sulfolobus acidocaldarius and its comparison with the homologue from Sulfolobus solfataricus. Biochimie 89(5):625–636

    Article  CAS  Google Scholar 

  • Raushel FM (2002) Bacterial detoxification of organophosphate nerve agents. Curr Opin Microbiol 5(3):288–295

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Sanchez L, Mingorance M, Pena A (2004) Chemical and physical factors affecting the extractability of methidathion from soil samples. Anal Bioanal Chem 378(3):764–769

    Article  CAS  Google Scholar 

  • Serdar CM, Gibson DT (1985) Enzymatic hydrolysis of organophosphates: cloning and expression of a parathion hydrolase gene from Pseudomonas diminuta. Nat Biotechnol 3:567–571

    Article  CAS  Google Scholar 

  • Shen Y, Lu P, Mei H, Yu H, Hong Q, Li S (2010) Isolation of a methyl parathion-degrading strain Stenotrophomonas sp. SMSP-1 and cloning of the ophc2 gene. Biodegradation 21:785–792

    Article  CAS  Google Scholar 

  • Singh BK (2009) Organophosphorus-degrading bacteria: ecology and industrial applications. Nat Rev Microbiol 7(2):156–164

    CAS  Google Scholar 

  • Sogorb MA, Vilanova E (2002) Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicol Lett 128(1–3):215–228

    Article  CAS  Google Scholar 

  • Tago K, Yonezawa S, Ohkouchi T, Ninomiya T, Hashimoto M, Hayatsu M (2006) A novel organophosphorus pesticide hydrolase gene encoded on a plasmid in Burkholderia sp. strain NF100. Microbes Environ 21(1):53–57

    Article  Google Scholar 

  • Tse H, Comba M, Alaee M (2004) Method for the determination of organophosphate insecticides in water, sediment and biota. Chemosphere 54(1):41–47

    Article  CAS  Google Scholar 

  • Wang L, Wen Y, Guo X, Wang G, Li S, Jiang J (2010) Degradation of methamidophos by Hyphomicrobium species MAP-1 and the biochemical degradation pathway. Biodegradation 21:513–523

    Article  CAS  Google Scholar 

  • Wu N, Deng M, Liang G, Chu X, Yao B, Fan Y (2004) Cloning and expression of ophc2, a new organphospho-rus hydrolase gene. Chinese Sci Bull 49(12):1245–1249

    Article  CAS  Google Scholar 

  • Yang C, Li R, Song Y, Chen K, Li S, Jiang J (2011) Identification of the biochemical degradation pathway of triazophos and its intermediate in Diaphorobacter sp. TPD-1. Curr Microbiol 62:1294–1301

    Article  CAS  Google Scholar 

  • Yu J, Zhou Z, Zhu L, Zhao Y (2008) Development of a GC-NPD standard addition method for detection of organophosphorus pesticide residues in laboratory test. Agrochemicals 9(47):657–660

    Google Scholar 

  • Zhang R, Cui Z, Jiang J, He J, Gu X, Li S (2005) Diversity of organophosphorus pesticide-degrading bacteria in a polluted soil and conservation of their organophosphorus hydrolase genes. Can J Microbiol 51(4):337–343

    Article  CAS  Google Scholar 

  • Zhang J, Xu J, Liu L (2011) Rapid determination of phorate and methyl parathion residues in vegetables and fruits by gas chromatography. Sci Technol Eng 11(13):3049–3051

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Provincial Environmental Protection Scientific Research Projects of Jiangsu Province (2009012), the Major Project on Control and Rectification of Water Body Pollution (2009ZX07103-002), and the Chinese National Natural Science Foundation (31070100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiandong Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, R., Liu, Y., Zhang, J. et al. An isofenphos-methyl hydrolase (Imh) capable of hydrolyzing the P–O–Z moiety of organophosphorus pesticides containing an aryl or heterocyclic group. Appl Microbiol Biotechnol 94, 1553–1564 (2012). https://doi.org/10.1007/s00253-011-3709-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3709-1

Keywords

Navigation