Skip to main content

Advertisement

Log in

Applications of microbial fermentations for production of gluten-free products and perspectives

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A gluten-free (GF) diet is recognised as being the only accepted treatment for celiac disease—a permanent autoimmune enteropathy triggered by the ingestion of gluten-containing cereals. The bakery products available in today’s gluten-free market are characterised by lower palatability than their conventional counterparts and may lead to nutritional deficiencies of vitamins, minerals and fibre. Thus, the production of high-quality gluten-free products has become a very important socioeconomical issue. Microbial fermentation by means of lactic acid bacteria and yeast is one of the most ecological/economical methods of producing and preserving food. In this review, the role of a fermentation process for improving the quality of GF products and for developing a new concept of GF products with nutraceutical and health-promoting characteristics will be examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams MR (1990) Topical aspects of fermented foods. Trends Food Sci Technol 1:140–144

    CAS  Google Scholar 

  • Alminger M, Eklund-Jonsson C (2008) Whole-grain cereal products based on a high-fibre barley or oat genotype lower post-prandial glucose and insulin responses in healthy humans. Eur J Nutr 47(6):294–300

    CAS  Google Scholar 

  • Angelov A, Gotcheva V, Kuncheva R, Hristozova T (2006) Development of a new oat-based probiotic drink. Int J Food Microbiol 112(1):75–80

    CAS  Google Scholar 

  • Annan NT, Poll L, Plahar WA, Jakobsen M (2003) Aroma characteristics of spontaneously fermented Ghanaian maize dough for kenkey. Eur Food Res Tech 217(1):53–60

    CAS  Google Scholar 

  • Arendt EK, Morrissey A, Moore MM, Dal Bello F (2008) Gluten-free breads. In: Elke KA, Fabio Dal Bello (eds) Gluten-free cereal products and beverages. Academic, San Diego, pp 289–319

    Google Scholar 

  • Arendt EK, Moroni AV, Morrissey JP, Dal Bello F (2010) Development of buckwheat and teff sourdoughs with the use of commercial starters. Int J Food Microbiol 142(1–2):142–148

    Google Scholar 

  • Ayalew A, Fehrmann H, Lepschy J, Beck R, Abate D (2006) Natural occurrence of mycotoxins in staple cereals from Ethiopia. Mycopathologia 162(1):57–63

    CAS  Google Scholar 

  • Bata A, Lasztity R (1999) Detoxification of mycotoxin-contaminated food and feed by microorganisms. Trends Food Sci Technol 10(6–7):223–228

    Google Scholar 

  • Batish VK, Roy U, et al (1997) Antifungal attributes of lactic acid bacteria—a review. Crit Rev Biotechnol 17(3):209–225

    Google Scholar 

  • Berghofer E, Schonlechner R (2009) Overview of gluten-free (cereals and other) raw materials and their properties. In: Arendt EK, DalBello F (eds) The science of gluten-free foods and beverages. AACC International, Saint Paul

    Google Scholar 

  • Biagi F, Klersy C, Balduzzi D, Corazza GR (2010) Are we not over-estimating the prevalence of celiac disease in the general population? Ann Med 42(8):557–561

    Google Scholar 

  • Blandino A, Al-Aseeri ME, Pandiella SS, Cantero D, Webb C (2003) Cereal-based fermented foods and beverages. Food Res Int 36(6):527–543

    CAS  Google Scholar 

  • Bodé S, Gudmand-Høyer E (1988) Incidence and clinical significance of lactose malabsorption in adult coeliac disease. Scand J Gastroentero 23(4):484–488

    Google Scholar 

  • Boonyaratanakornkit M (2000) Development of a yoghurt-type product from saccharified rice. Kasetsart Journal 34:107–116

    Google Scholar 

  • Brandt MJ, Bode R (2009) Gluten-free sourdough starter and products. Baking+Biscuit International (1):34–36

  • Bresler G, Brizzio SB, Vaamonde G (1995) Mycotoxin-producing potential of fungi isolated from amaranth seeds in Argentina. Int J Food Microbiol 25(1):101–108

    CAS  Google Scholar 

  • Brower V (1998) Nutraceuticals: poised for a healthy slice of the healthcare market? Nat Biotechnol 16(8):728–731

    CAS  Google Scholar 

  • Bullerman LB, Bianchini A (2007) Stability of mycotoxins during food processing. Int J Food Microbiol 119(1–2):140–146

    CAS  Google Scholar 

  • Butt MS, Tahir-Nadeem M, Khan MKI, Shabir R, Butt MS (2008) Oat: unique among the cereals. Eur J Nutr 47(2):68–79

    Google Scholar 

  • Caplice E, Fitzgerald GF (1999) Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 50(1-2):131–149

    Google Scholar 

  • Capristo E, Addolorato G, Mingrone G, De Gaetano A, Greco AV, Tataranni PA, Gasbarrini G (2000) Changes in body composition, substrate oxidation, and resting metabolic rate in adult celiac disease patients after a 1-y gluten-free diet treatment. Am J Clin Nutr 72(1):76–81

    CAS  Google Scholar 

  • Castelluzzo MA, Massoud M, Valitutti F, Renato T, Rea F, Di Iorio L, Polito A, Minò G, Cotugno N, Paone FM (2011) Coexisting celiac disease and overweight/obesity in an Italian pediatric population. Gastroenterology 140(5, Supplement 1):S-685

    Google Scholar 

  • Charalampopoulos D, Pandiella SS, Webb C (2002a) Growth studies of potentially probiotic lactic acid bacteria in cereal-based substrates. J Appl Microbiol 92(5):851–859

    CAS  Google Scholar 

  • Charalampopoulos D, Wang R, Pandiella SS, Webb C (2002b) Application of cereals and cereal components in functional foods: a review. Int J Food Microbiol 79(1–2):131–141

    CAS  Google Scholar 

  • Chelule PK, Mbongwa HP, Carries S, Gqaleni N (2010) Lactic acid fermentation improves the quality of amahewu, a traditional South African maize-based porridge. Food Chem 122(3):656–661

    CAS  Google Scholar 

  • Ciacci C, Cirillo M, Cavallaro R, Mazzacca G (2002) Long-term follow-up of celiac adults on gluten-free diet: prevalence and correlates of intestinal damage. Digestion 66(3):178–185

    CAS  Google Scholar 

  • Coda R, Rizzello CG, Gobbetti M (2010) Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of gamma-aminobutyric acid (GABA). Int J Food Microbiol 137(2–3):236–245

    CAS  Google Scholar 

  • Dal Bello F, Clarke CI, Ryan LAM, Ulmer H, Schober TJ, Ström K, Sjögren J, van Sinderen D, Schnürer J, Arendt EK (2007) Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. Journal of Cereal Science 45(3):309–318

    CAS  Google Scholar 

  • Dalie DKD, Deschamps AM, Richard-Forget F (2010) Lactic acid bacteria—potential for control of mould growth and mycotoxins: a review. Food Control 21(4):370–380

    CAS  Google Scholar 

  • Dall’Asta C, Galaverna G, Mangia M, Sforza S, Dossena A, Marchelli R (2009) Free and bound fumonisins in gluten-free food products. Mol Nutr Food Res 53(4):492–499

    Google Scholar 

  • De Angelis M, Coda R, Silano M, Minervini F, Rizzello CG, Di Cagno R, Vicentini O, De Vincenzi M, Gobbetti M (2006a) Fermentation by selected sourdough lactic acid bacteria to decrease celiac intolerance to rye flour. J Cereal Sci 43(3):301–314

    Google Scholar 

  • De Angelis M, Rizzello CG, Fasano A, Clemente MG, Simone CD, Silano M, Vincenzi MD, Losito I, Gobbetti M (2006b) VSL#3 probiotic preparation has the capacity to hydrolyze gliadin polypeptides responsible for Celiac Sprue probiotics and gluten intolerance. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease 1762(1):80–93

    Google Scholar 

  • De Vuyst L, Vrancken G, Ravyts F, Rimaux I, Weckx S (2009) Biodiversity, ecological determinants, and metabolic exploitation of sourdough microbiota. Food Microbiol 26(7):666–675. doi:10.1016/J.Fm.2009.07.012

    Google Scholar 

  • Di Cagno R, De Angelis M, Auricchio S, Greco L, Clarke C. De Vincenzi M, Giovannini C, D’Archivio M, Landolfo F, Parrilli G, Minervini F, Arendt E, Gobbetti M (2004) Sourdough bread made from wheat and nontoxic flours and started with selected lactobacilli is tolerated in celiac sprue patients. Appl Environ Microb 70(2):1088–1096

    Google Scholar 

  • Di Cagno R, De Angelis M, Alfonsi G, De Vincenzi M, Silano M, Vincentini O, Gobbetti M (2005) Pasta made from durum wheat semolina fermented with selected lactobacilli as a tool for a potential decrease of the gluten intolerance. J Agr Food Chem 53(11):4393–4402

    Google Scholar 

  • Di Cagno R, Rizzello CG, De Angelis M, Cassone A, Giuliani G, Benedusi A, Limitone A, Surico RF, Gobbetti M (2008) Use of selected sourdough strains of Lactobacillus for removing gluten and enhancing the nutritional properties of gluten-free bread. J Food Protect 71(7):1491–1495

    Google Scholar 

  • Di Cagno R, Barbato M, Di Camillo C, Maiella G, Pannone V, Rizzello CG, De Angelis M, Giuliani G, De Vincenzi M, Gobbetti M, Cucchiara S (2010a) PA29 presumptive safety for celiac patients of wheat baked goods rendered gluten-free during sourdough fermentation. Digestive and Liver Disease 42(Supplement 5):S353

    Google Scholar 

  • Di Cagno R, Barbato M, Di Camillo C, Rizzello CG, De Angelis M, Giuliani G, De Vincenzi M, Gobbetti M, Cucchiara S (2010b) Gluten-free sourdough wheat baked goods appear safe for young celiac patients: a pilot study. J Pediatr Gastroenterol Nutr 51(6):777–783

    Google Scholar 

  • Dickey W, Kearney N (2006) Overweight in celiac disease: prevalence, clinical characteristics, and effect of a gluten-free diet. Am J Gastroenterol 101(10):2356–2359

    CAS  Google Scholar 

  • Dike KS, Sanni AI (2010) Influence of starter culture of lactic acid bacteria on the shelf life of agidi, an indigenous fermented cereal product. Afr J Biotechnol 9(46):7922–7927

    CAS  Google Scholar 

  • Edema MO, Sanni AI (2008) Functional properties of selected starter cultures for sour maize bread. Food Microbiol 25(4):616–625

    CAS  Google Scholar 

  • El-Chammas K, Danner E (2011) Gluten-free diet in nonceliac disease. Nutr Clin Pract 26(3):294–299

    Google Scholar 

  • El-Nezami H, Polychronaki N, Salminen S, Mykkanen H (2002) Binding rather than metabolism may explain the interaction of two food-grade Lactobacillus strains with zearalenone and its derivative alpha-zearalenol. Appl Environ Microbiol 68(7):3545–3549

    CAS  Google Scholar 

  • Farrell RJ, Kelly CP (2002) Celiac sprue. N Engl J Med 346(3):180–188

    CAS  Google Scholar 

  • Gallagher E, Gormley TR, Arendt EK (2004) Recent advances in the formulation of gluten-free cereal-based products. Trends Food Sci Technol 15(3–4):143–152

    CAS  Google Scholar 

  • Galle S, Schwab C, Arendt E, Ganzle M (2010) Exopolysaccharide-forming Weissella strains as starter cultures for sorghum and wheat sourdoughs. J Agric Food Chem 58(9):5834–5841

    CAS  Google Scholar 

  • Galle S, Schwab C, Arendt EK, Ganzle MG (2011) Structural and rheological characterisation of heteropolysaccharides produced by lactic acid bacteria in wheat and sorghum sourdough. Food Microbiol 28(3):547–553

    CAS  Google Scholar 

  • Gilliland SE, Nelson CR, Maxwell C (1985) Assimilation of cholesterol by Lactobacillus-Acidophilus. Appl Environ Microb 49(2):377–381

    Google Scholar 

  • Giuliani GM, Benedusi A, Di Cagno R, De Angelis M, Luisi A, Gobbetti M (2006) Miscela di batteri lattici per la preparazione di prodotti da forno senza glutine.

  • Gobbetti M (1998) The sourdough microflora: interactions of lactic acid bacteria and yeasts. Trends Food Sci Technol 9(7):267–274

    CAS  Google Scholar 

  • Gobbetti M, Rizzello CG, Di Cagno R, De Angelis M (2007) Sourdough lactobacilli and celiac disease. Food Microbiol 24(2):187–196

    Google Scholar 

  • Gomes AMP, Malcata FX (1999) Bifidobacterium spp. and Lactobacillus acidophilus: biological, biochemical, technological and therapeutical properties relevant for use as probiotics. Trends Food Sci Technol 10(4–5):139–157

    CAS  Google Scholar 

  • Gourama H, Bullerman LB (1995) Antimycotic and antiaflatoxigenic effect of lactic-acid bacteria—a review. J Food Prot 58(11):1275–1280

    CAS  Google Scholar 

  • Hager AS, Axel C, Arendt EK (2011) Status of carbohydrates and dietary fiber in gluten-free diets. Cereal Foods World 56(3):109–114

    CAS  Google Scholar 

  • Hallert C, Grant C, Grehn S, Granno C, Hulten S, Midhagen G, Strom M, Svensson H, Valdimarsson T (2002) Evidence of poor vitamin status in celiac patients on a gluten-free diet for 10 years. Alimentary Pharmacology and Therapeutics Aliment Pharm Therap 16(7):1333–1339

    CAS  Google Scholar 

  • Hamad AM, Fields ML (1979) Evaluation of the protein quality and available lysine of germinated and fermented cereals. J Food Sci 44(2):456–459

    CAS  Google Scholar 

  • Hansen A, Schieberle P (2005) Generation of aroma compounds during sourdough fermentation: applied and fundamental aspects. Trends Food Sci Technol 16(1–3):85–94

    CAS  Google Scholar 

  • Haskard CA, El-Nezami HS, Kankaanpaa PE, Salminen S, Ahokas JT (2001) Surface binding of aflatoxin B(1) by lactic acid bacteria. Applied Environmental Microbiology 67(7):3086

    CAS  Google Scholar 

  • Helland MH, Wicklund T, Narvhus JA (2004) Growth and metabolism of selected strains of probiotic bacteria in milk- and water-based cereal puddings. Int Dairy J 14(11):957–965

    Google Scholar 

  • Holzapfel W (1997) Use of starter cultures in fermentation on a household scale. Food Control 8(5–6):241–258

    Google Scholar 

  • Hopman EG, le Cessie S, von Blomberg BM, Mearin ML (2006) Nutritional management of the gluten-free diet in young people with celiac disease in the Netherlands. J Pediatr Gastroenterol Nutr 43(1):102–108

    CAS  Google Scholar 

  • Houben A, Gotz H, Mitzscherling M, Becker T (2010) Modification of the rheological behavior of amaranth (Amaranthus hypochondriacus) dough. J Cereal Sci 51(3):350–356

    Google Scholar 

  • Hounhouigan DJ, Nout MJR, Nago CM, Houben JH, Rombouts FM (1993) Composition and microbiological and physical attributes of Mawe, a fermented maize dough from Benin. Int J Food Sci Technol 28(5):513–517

    CAS  Google Scholar 

  • Huttner EK, Dal Bello F, Arendt EK (2010) Identification of lactic acid bacteria isolated from oat sourdoughs and investigation into their potential for the improvement of oat bread quality. Eur Food Res Technol 230(6):849–857

    Google Scholar 

  • Ibanoglu E, Ercelebi EA (2007) Thermal denaturation and functional properties of egg proteins in the presence of hydrocolloid gums. Food Chem 101(2):626–633

    CAS  Google Scholar 

  • Johansson ML, Nobaek S, Berggren A, Nyman M, Björck I, Ahrné S, Jeppsson B, Molin G (1998) Survival of Lactobacillus plantarum DSM 9843 (299v), and effect on the short-chain fatty acid content of faeces after ingestion of a rose-hip drink with fermented oats. Int J Food Microbiol 42(1–2):29–38

    CAS  Google Scholar 

  • Johnson C, Handen B, Zimmer M, Sacco K, Turner K (2011) Effects of gluten free/casein free diet in young children with autism: a pilot study. Journal of Developmental and Physical Disabilities 23(3):213–225

    Google Scholar 

  • Kabak B, Dobson ADW (2011) An introduction to the traditional fermented foods and beverages of Turkey. Crit Rev Food Sci Nutr 51(3):248–260

    Google Scholar 

  • Keagy PM, Stokstad ELR, Fellers DA (1975) Folacin stability during bread processing and family flour storage. Cereal Chemistry 52(3):348–356

    CAS  Google Scholar 

  • Koh BK, Singh V (2009) Cooking behaviour of rice and black gram in the preparation of idli, a traditional fermented product of Indian origin, by viscography. Journal of Texture Studies 40(1):36–50

    Google Scholar 

  • Kunji ERS, Mierau I, Hagting A, Poolman B, Konings WN (1996) The proteolytic systems of lactic acid bacteria. Anton Leeuw Int J G 70(2-4):187–221

    Google Scholar 

  • Kupper C (2005) Dietary guidelines and implementation for celiac disease. Gastroenterology 128(4, Supplement 1):S121–S127

    CAS  Google Scholar 

  • Lavermicocca P, Valerio F, Visconti A (2003) Antifungal activity of phenyllactic acid against molds isolated from bakery products. Appl Environ Microbiol 69(1):634–640

    CAS  Google Scholar 

  • Lazaridou A, Duta D, Papageorgiou M, Belc N, Biliaderis CG (2007) Effects of hydrocolloids on dough rheology and bread quality parameters in gluten-free formulations. Journal of Food Engineering 79(3):1033–1047

    CAS  Google Scholar 

  • Lee JH, Lee SK, Park KH, Hwang IK, Ji GE (1999) Fermentation of rice using amylolytic Bifidobacterium. Int J Food Microbiol 50(3):155–161

    CAS  Google Scholar 

  • Liljeberg H, Björck I (1998) Delayed gastric emptying rate may explain improved glycaemia in healthy subjects to a starchy meal with added vinegar. Eur J Clin Nutr 52(5):368–371

    CAS  Google Scholar 

  • Liljeberg HGM, Lonner CH, Bjorck IME (1995) Sourdough fermentation or addition of organic acids or corresponding salts to bread improves nutritional properties of starch in healthy humans. J Nutr 125(6):1503–1511

    CAS  Google Scholar 

  • Livsmedelsverket (2002) Riksmaten 1997–98. Kostvanor och näringsintag i Sverige, Metod och resultatanalys. Livsmedelsverket, Uppsala

    Google Scholar 

  • Lowe DP, Arendt EK (2004) The use and effects of lactic acid bacteria in malting and brewing with their relationships to antifungal activity, mycotoxins and gushing: A review. J I Brewing 110(3):163–180

    Google Scholar 

  • Mariani P, Viti MG, Montouri M, La Vecchia A, Cipolletta E, Calvani L, Bonamico M (1998) The gluten-free diet: a nutritional risk factor for adolescents with celiac disease? J Pediatr Gastroenterol Nutr 27(5):519–523

    CAS  Google Scholar 

  • Marklinder I, Lönner C (1992) Fermentation properties of intestinal strains of Lactobacillus, of a sourdough and of a yoghurt starter culture in an oat-based nutritive solution. Food Microbiol 9(3):197–205

    CAS  Google Scholar 

  • Marshall VM, Tamime AY (1997) Starter cultures employed in the manufacture of biofermented milks. Int J Dairy Technol 50(1):35–41

    Google Scholar 

  • Mårtensson O, Andersson C, Andersson K, Öste R, Holst O (2001) Formulation of an oat-based fermented product and its comparison with yoghurt. J Sci Food Agric 81(14):1314–1321

    Google Scholar 

  • Mårtensson O, Oste B, Holst O (2002a) The effect of yoghurt culture on the survival of probiotic bacteria in oat-based, non-dairy products. Food Res Int 35(8):775–784

    Google Scholar 

  • Mårtensson O, Staaf J, Duecas-Chasco M, Irastorza A, Oste R, Holst O (2002b) A fermented, ropy, non-dairy oat product based on the exopolysaccharide-producing strain Pediococcus damnosus. Advances in Food Sciences 24:4–11

    Google Scholar 

  • McKay LL, Baldwin KA (1990) Applications for biotechnology: present and future improvements in lactic acid bacteria. FEMS Microbiol Lett 87(1–2):3–14

    CAS  Google Scholar 

  • McMaster LD, Kokott SA, Reid SJ, Abratt V (2005) Use of traditional African fermented beverages as delivery vehicles for Bifidobacterium lactis DSM 10140. Int J Food Microbiol 102(2):231–237

    CAS  Google Scholar 

  • Meroth CB, Hammes WP, Hertel C (2004) Characterisation of the microbiota of rice sourdoughs and description of Lactobacillus spicheri sp. nov. Syst Appl Microbiol 27(2):151–159

    CAS  Google Scholar 

  • Minervini F, De Angelis M, Di Cagno R, Pinto D, Siragusa S, Rizzello CG, Gobbetti M (2010) Robustness of Lactobacillus plantarum starters during daily propagation of wheat flour sourdough type I. Food Microbiol 27(7):897–908

    CAS  Google Scholar 

  • Mokoena MP, Chelule PK, Gqaleni N (2005) Reduction of fumonisin B1 and zearalenone by lactic acid bacteria in fermented maize meal. J Food Prot 68(10):2095–2099

    CAS  Google Scholar 

  • Mokoena MP, Chelule PK, Gqaleni N (2006) The toxicity and decreased concentration of aflatoxin B1 in natural lactic acid fermented maize meal. J Appl Microbiol 100(4):773–777

    CAS  Google Scholar 

  • Moore MM, Juga B, Schober TJ, Arendt EK (2007) Effect of lactic acid bacteria on properties of gluten-free sourdoughs, batters, and quality and ultrastructure of gluten-free bread. Cereal Chemistry 84(4):357–364

    CAS  Google Scholar 

  • Moore MM, Dal Bello F, Arendt EK (2008) Sourdough fermented by Lactobacillus plantarum FST 1.7 improves the quality and shelf life of gluten-free bread. European Food Research and Technology 226(6):1309–1316

    CAS  Google Scholar 

  • Moroni AV, Dal Bello F, Arendt EK (2009) Sourdough in gluten-free bread-making: an ancient technology to solve a novel issue? Food Microbiol 26(7):676–684

    CAS  Google Scholar 

  • Moroni AV, Arendt EK, Morrissey JP, Dal Bello F (2010) Development of buckwheat and teff sourdoughs with the use of commercial starters. Int J Food Microbiol 142(1–2):142–148

    CAS  Google Scholar 

  • Mugula JK, Nnko SAM, et al (2001) Changes in quality attributes during storage of togwa, a lactic acid fermented gruel. J Food Safety 21(3):181–194

    Google Scholar 

  • Mugula JK, Nnko SAM, Narvhus JA, Sorhaug T (2003) Microbiological and fermentation characteristics of togwa, a Tanzanian fermented food. Int J Food Microbiol 80(3):187–199

    CAS  Google Scholar 

  • Muyanja CMBK, Narvhus JA, Treimo J, Langsrud T (2003) Isolation, characterisation and identification of lactic acid bacteria from bushera: a Ugandan traditional fermented beverage. Int J Food Microbiol 80(3):201–210

    CAS  Google Scholar 

  • Nanson NJ, Fields ML (1984) Influence of temperature of fermentation on the nutritive value of lactic acid fermented cornmeal. J Food Sci 49(3):958–959

    CAS  Google Scholar 

  • Obizoba IC, Atii JV (1994) Evaluation of the effect of processing techniques on the nutrient and antinutrient contents of pearl millet (Pennisetum glaucum) seeds. Plant Foods Hum Nutr 45(1):23–34

    CAS  Google Scholar 

  • Oluwafemi F, Da-Silva FA (2009) Removal of aflatoxins by viable and heat-killed Lactobacillus species isolated from fermented maize. Journal of Applied Biosciences 16:871–876

    Google Scholar 

  • Ortolani C, Pastorello EA (2006) Food allergies and food intolerances. Best Pract Res Clin Gastroenterol 20(3):467–483

    CAS  Google Scholar 

  • Osman MA (2004) Changes in sorghum enzyme inhibitors, phytic acid, tannins and in vitro protein digestibility occurring during Khamir (local bread) fermentation. Food Chem 88(1):129–134

    CAS  Google Scholar 

  • Östman, E (2003) Fermentation as a means of optimizing the glycaemic index—food mechanisms and metabolic merits with emphasis on lactic acid in cereal products. Ph.D. thesis, Lund University, Department of Applied Nutrition and Food Chemistry

  • Ostry V, Ruprich J (1998) Determination of the mycotoxin fumonisins in gluten-free diet (corn-based commodities) in the Czech Republic. Central European Journal of Public Health 6(1):57–60

    CAS  Google Scholar 

  • Pszczola DE (1992) The nutraceutical initiative: a proposal for economic and regulatory reform. Food Biotechnology 46:77–79

    Google Scholar 

  • Reddy KRN, Abbas HK, Abel CA, Shier WT, Oliveira CAF, Raghavender CR (2009) Mycotoxin contamination of commercially important agricultural commodities. Toxin Reviews 28(2–3):154–168

    CAS  Google Scholar 

  • Renzetti S, Arendt EK (2009) Effects of oxidase and protease treatments on the breadmaking functionality of a range of gluten-free flours. European Food Research and Technology 229(2):307–317. doi:10.1007/s00217-009-1048-6

    CAS  Google Scholar 

  • Renzetti S, Behr J, Vogel RF, Arendt EK (2008) Transglutaminase polymerisation of buckwheat (Fagopyrum esculentum Moench) proteins. Journal of Cereal Science 48(3):747–754

    CAS  Google Scholar 

  • Renzetti S, Courtin CM, Delcour JA, Arendt EK (2010) Oxidative and proteolytic enzyme preparations as promising improvers for oat bread formulations: rheological, biochemical and microstructural background. International Journal of Food Microbiology Food Chemistry 119(4):1465–1473

    CAS  Google Scholar 

  • Rizzello CG, De Angelis M, Di Cagno R, Camarca A, Silano M, Losito A, De Vincenzi M, De Bari MD, Palmisano F, Maurano F, Gianfrani C, Gobbetti M (2007) Highly efficient gluten degradation by lactobacilli and fungal proteases during food processing: new perspectives for celiac disease. Appl Environ Microbiol 73(14):4499–4507

    CAS  Google Scholar 

  • Rizzello GC, Coda R, De Angelis M, Di Cagno R, Carnevali P, Gobbetti M (2009) Long-term fungal inhibitory activity of water-soluble extract from Amaranthus spp. seeds during storage of gluten-free and wheat flour breads. Int J Food Microbiol 131(2-3):189–196

    Google Scholar 

  • Roberfroid MB (1998) Prebiotics and synbiotics: concepts and nutritional properties. Br J Nutr 80(4):S197–S202

    CAS  Google Scholar 

  • Rouse S, van Sinderen D (2008) Bioprotective potential of lactic acid bacteria in malting and brewing. J Food Protect 71(8):1724–1733

    Google Scholar 

  • Ryan LA, Zannini E, Dal Bello F, Pawlowska A, Koehler P, Arendt EK (2011) Lactobacillus amylovorus DSM 19280 as a novel food-grade antifungal agent for bakery products. Int J Food Microbiol 146(3):276–283

    Google Scholar 

  • Salovaara H (1996) The time of cereal based functional foods is here: introducing Yosa®, avellie. 26th Nordic Cereal Congress, Haugesund, Norway, Haugesund

  • Sanni AI, Onilude AA, Fatungase MO (1998) Production of sour maize bread using starter-cultures. World J Microbiol Biotechnol 14(1):101–106

    Google Scholar 

  • Santos MCR (2001) Desenvolvimento de bebida e farinha láctea fermentada de ação probiótica a base de soro de leite e farinha de mandioca por cultura mista de Lactobacillus plantarum A6, Lactobacillus casei Shirota e Lactobacillus acidophilus. Engenharia de Alimentos. Curitiba, Brasil Universidade Federal do Paraná. MSc 106

  • Schnurer J, Magnusson J (2005) Antifungal lactic acid bacteria as biopreservatives. Trends Food Sci Technol 16(1–3):70–78

    Google Scholar 

  • Schober TJ, Bean SR, Boyle DL (2007) Gluten-free sorghum bread improved by sourdough fermentation: biochemical, rheological, and microstructural background. J Agric Food Chem 55(13):5137–5146

    CAS  Google Scholar 

  • Schoenlechner R, Wendner M, Siebenhandl-Ehn S, Berghofer E (2010) Pseudocereals as alternative sources for high folate content in staple foods. Journal of Cereal Science 52(3):475–479

    CAS  Google Scholar 

  • Schollenberger M, Muller HM, Rufle M, Suchy S, Planck S, Drochner W (2005) Survey of Fusarium toxins in foodstuffs of plant origin marketed in Germany. Int J Food Microbiol 97(3):317–326

    CAS  Google Scholar 

  • Schwab C, Mastrangelo M, Corsetti A, Ganzle M (2008) Formation of oligosaccharides and polysaccharides by Lactobacillus reuteri LTH5448 and Weissella cibaria 10 M in sorghum sourdoughs. Cereal Chemistry 85(5):679–684

    CAS  Google Scholar 

  • Severson DK (1998) Lactic acid fermentations. In: Reed TWNaG (ed) Nutritional requirements of commercially important microorganisms. Esteekay Associates, Milwaukee, pp 258–297

    Google Scholar 

  • Shortt C (1999) The probiotic century: historical and current perspectives. Trends Food Sci Technol 10(12):411–417

    CAS  Google Scholar 

  • Siragusa S, De Angelis M, Di Cagno R, Rizzello CG, Coda R, Gobbetti M (2007) Synthesis of gamma-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl Environ Microbiol 73(22):7283–7290

    CAS  Google Scholar 

  • Smecuol E, Gonzalez D, Mautalen C, Siccardi A, Cataldi M, Niveloni S, Mazure R, Vazquez H, Pedreira S, Soifer G, Boerr LA, Maurino E, Bai JC (1997) Longitudinal study on the effect of treatment on body composition and anthropometry of celiac disease patients. Am J Gastroenterol 92(4):639–643

    CAS  Google Scholar 

  • Songre-Ouattara LT, Mouquet-Rivier C, Icard-Verniere C, Rochette I, Diawara B, Guyot JP (2009) Potential of amylolytic lactic acid bacteria to replace the use of malt for partial starch hydrolysis to produce African fermented pearl millet gruel fortified with groundnut. Int J Food Microbiol 130(3):258–264

    CAS  Google Scholar 

  • Stanton C, Ross RP, Fitzgerald GF, Van Sinderen D (2005) Fermented functional foods based on probiotics and their biogenic metabolites. Curr Opin Biotechnol 16(2):198–203

    CAS  Google Scholar 

  • Steinkraus KH (1995) Handbook of indigenous fermented foods. Marcel Dekker, New York

    Google Scholar 

  • Sterr Y, Weiss A, Schmidt H (2009) Evaluation of lactic acid bacteria for sourdough fermentation of amaranth. Int J Food Microbiol 136(1):75–82

    CAS  Google Scholar 

  • Swagerty DL Jr, Walling AD, Klein RM (2002) Lactose intolerance. Am Fam Physician 65(8):1845–1850

    Google Scholar 

  • Tack GJ, Verbeek WHM, Schreurs MWJ, Mulder CJJ (2010) The spectrum of celiac disease: epidemiology, clinical aspects and treatment. Nat Rev Gastroenterol Hepatol 7(4):204–213

    CAS  Google Scholar 

  • Tanaka K, Sago Y, Zheng Y, Nakagawa H, Kushiro M (2007) Mycotoxins in rice. Int J Food Microbiol 119(1–2):59–66

    CAS  Google Scholar 

  • Taranto MP, Vera JL, Hugenholtz J, De Valdez GF, Sesma F (2003) Lactobacillus reuteri CRL1098 produces cobalamin. J Bacteriol 185(18):5643–5647

    CAS  Google Scholar 

  • Taylor JRN, Emmambux MN (2008) Gluten-free foods and beverages from millets. In: Elke KA, Fabio Dal B (eds) Gluten-free cereal products and beverages. Academic, San Diego, pp 119–148

    Google Scholar 

  • Turbic A, Ahokas JT, Haskard CA (2002) Selective in vitro binding of dietary mutagens, individually or in combination, by lactic acid bacteria. Food Addit Contam 19(2):144–152

    CAS  Google Scholar 

  • Valencia Chamorro SA (2003) Quinoa. In: Caballero B (ed) Encyclopedia of food science and nutrition. Academic, Amsterdam, pp 4895–4902

    Google Scholar 

  • Vallons KJR, Ryan LAM, Arendt EK (2010) Promoting structure formation by high pressure in gluten-free flours. LWT Food Sci Technol 44:1672–1680

    Google Scholar 

  • Vesa TH, Marteau P, Korpela R (2000) Lactose intolerance. J Am Coll Nutr 19(suppl 2):165S–175S

    Google Scholar 

  • Vogelmann SA, Seitter M, Singer U, Brandt MJ, Hertel C (2009) Adaptability of lactic acid bacteria and yeasts to sourdoughs prepared from cereals, pseudocereals and cassava and use of competitive strains as starters. Int J Food Microbiol 130(3):205–212

    CAS  Google Scholar 

  • Wacher C, Canas A, Barzana E, Lappe P, Ulloa M, Owens JD (2000) Microbiology of Indian and Mestizo pozol fermentations. Food Microbiol 17(3):251–256

    Google Scholar 

  • Wald N (1991) Prevention of neural tube defects. Results of the Medical Research Council vitamin study. Lancet 338:131–137

    Google Scholar 

  • Wieser H, Koehler P (2008) The biochemical basis of celiac disease. Cereal Chem 85(1):1–13

    Google Scholar 

  • Wijngaard HH, Arendt EK (2006) Optimisation of a mashing program for 100% malted buckwheat. J I Brewing 112(1):57–65

    Google Scholar 

  • Yazynina E, Johansson M, Jägerstad M, Jastrebova J (2008) Low folate content in gluten-free cereal products and their main ingredients. Food Chem 111(1):236–242

    CAS  Google Scholar 

  • Yousif NE, El Tinay AH (2000) Effect of fermentation on protein fractions and in vitro protein digestibility of maize. Food Chem 70(2):181–184

    CAS  Google Scholar 

  • Zinedine A, Faid M, Benlemlih M (2005) In vitro reduction of aflatoxin b1 by strains of lactic acid bacteria isolated from Moroccan sourdough bread. International Journal of Agriculture and Biology 7(1):67–70

    CAS  Google Scholar 

  • Zweytick G, Berghofer E, (2009) Production of Gluten-Free Beer. Gluten-Free Food Science and Technology, Wiley-Blackwell, pp 181–199

  • Zweytick G, Sauerzopf E, Berghofer E (2005) Production of gluten-free beer. AACC-Annual Meeting Orlando, FL, USA

Download references

Acknowledgements

The authors would like to acknowledge financial support by the Seventh Framework Program of the European Community for research, technological development and demonstration activities (2007–2013) and Specific Programme “Capacities”—research for the benefit of SMEs (262418 GLUTENFREE). The authors acknowledge that this research was also partly funded by FIRM Ireland. This publication solely reflects the authors’ views and the Community is not liable for any use that may be made of the information contained in this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Zannini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zannini, E., Pontonio, E., Waters, D.M. et al. Applications of microbial fermentations for production of gluten-free products and perspectives. Appl Microbiol Biotechnol 93, 473–485 (2012). https://doi.org/10.1007/s00253-011-3707-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3707-3

Keywords

Navigation