Skip to main content
Log in

Stereoselective hydrolysis of aryl-substituted dihydropyrimidines by hydantoinases

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, we investigated the possibility of using a modified hydantoinase process for the production of optically pure β-amino acids. Two aryl-substituted dihydropyrimidines d,l-6-phenyl-5,6-dihydrouracil (PheDU) and para-chloro-d,l-6-phenyl-5,6-dihydrouracil (pClPheDU) were synthesized. Hydrolysis of these novel substrates to the corresponding N-carbamoyl-β-amino acids by three recombinant d-hydantoinases and several bacterial strains was tested. All applied recombinant d-hydantoinases and eight bacterial isolates catalyzed the conversion of PheDU to N-carbamoyl-β-phenylalanine (NCβPhe). Some of these biocatalysts showed an enantioselectivity for either the d- or the l-PheDU enantiomer. The second dihydropyrimidinase substrate pClPheDU was hydrolyzed by all three recombinant d-hydantoinases and six of the wild-type strains. To our knowledge, this is the first dihydropyrimidinase activity reported with this aryl-substituted dihydropyrimidine. For selected biocatalysts, hydantoinase activity towards aryl-substituted hydantoins was demonstrated as well. However, none of the bacterial strains tested so far exhibited any carbamoylase activity towards NCβPhe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andújar-Sánchez M, Las Heras-Vázquez FJ, Clemente-Jiménez JM, Martínez-Rodríguez S, Camara-Artigas A, Rodríguez-Vico F, Jara-Pérez V (2006) Enzymatic activity assay of d-hydantoinase by isothermal titration calorimetry. Determination of the thermodynamic activation parameters for the hydrolysis of several substrates. J Biochem Biophys Methods 67(1):57–66

    Article  Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2006) GenBank. Nucleic Acids Res 34:D16–D20

    Article  CAS  Google Scholar 

  • Bertani G (1951) Studies on lysogenesis.1. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62(3):293–300

    CAS  Google Scholar 

  • Cai Y, Trodler P, Jiang S, Zhang W, Wu Y, Lu Y, Yang S, Jiang W (2009) Isolation and molecular characterization of a novel d-hydantoinase from Jannaschia sp. CCS1. FEBS J 276(13):3575–3588. doi:10.1111/j.1742-4658.2009.07077.x

    Article  CAS  Google Scholar 

  • Cheng RP, Gellman SH, DeGrado WF (2001) β-Peptides: from structure to function. Chem Reviews 101(10):3219–3232. doi:10.1021/cr000045i

    Article  CAS  Google Scholar 

  • Dakin HD, Dudley HW (1914) The resolution of inactive uramido-acids and hydantoins into active components, and their conversion into amino-acids. I. β-Phenyl-α-uramidopropionic acid, benzylhydantoin and phenylalanine. J Biol Chem 17(1):29–36

    CAS  Google Scholar 

  • Dürr R (2007) Screening and description of novel hydantoinases from distinct environmental sources. Doctoral thesis, Universität Karlsruhe (TH), Karlsruhe, ISBN 9783866441736

  • Dürr R, Vielhauer O, Burton SG, Cowan DA, Punal A, Brandao PFB, Bull AT, Syldatk C (2006) Distribution of hydantoinase activity in bacterial isolates from geographically distinct environmental sources. J Mol Catal B Enzym 39(1–4):160–165

    Article  Google Scholar 

  • Dürr R, Neumann A, Vielhauer O, Altenbuchner J, Burton SG, Cowan DA, Syldatk C (2008) Genes responsible for hydantoin degradation of a halophilic Ochrobactrum sp. G21 and Delftia sp. 124—new insight into relation of d-hydantoinases and dihydropyrimidinases. J Mol Catal B Enzym 52–3:2–12

    Article  Google Scholar 

  • Fischer E, Roeder G (1901) Synthese des Uracils, Thymins und Phenyluracils. Ber Dtsch Chem Ges 34(3):3751–3763

    Article  CAS  Google Scholar 

  • Fleming PE, Mocek U, Floss HG (1993) Biosynthesis of taxoids. Mode of formation of the taxol side chain. J Am Chem Soc 115(2):805–807. doi:10.1021/ja00055a072

    Article  CAS  Google Scholar 

  • Frackenpohl J, Arvidsson PI, Schreiber JV, Seebach D (2001) The outstanding biological stability of β- and γ-peptides toward proteolytic enzymes: an in vitro investigation with fifteen peptidases. ChemBioChem 2(6):445–455

    Article  CAS  Google Scholar 

  • Gokhale DV, Bastawde KB, Patil SG, Kalkote UR, Joshi RR, Joshi RA, Ravindranathan T, Gaikwad BG, Jogdand VV, Nene S (1996) Chemoenzymatic synthesis of d-phenylglycine using hydantoinase of Pseudomonas desmolyticum resting cells. Enzyme Microb Technol 18(5):353–357

    Article  CAS  Google Scholar 

  • Kao C-H, Lo H-H, Hsu S-K, Hsu W-H (2008) A novel hydantoinase process using recombinant Escherichia coli cells with dihydropyrimidinase and l-N-carbamoylase activities as biocatalyst for the production of l-homophenylalanine. J Biotechnol 134(3–4):231

    Article  CAS  Google Scholar 

  • Lane D (1991) 16S/23S rRNA Sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester

    Google Scholar 

  • Liljeblad A, Kanerva LT (2006) Biocatalysis as a profound tool in the preparation of highly enantiopure β-amino acids. Tetrahedron 62(25):5831–5854

    Article  CAS  Google Scholar 

  • Liu M, Sibi MP (2002) Recent advances in the stereoselective synthesis of β-amino acids. Tetrahedron 58(40):7991–8035

    Article  CAS  Google Scholar 

  • Louwrier A, Knowles CJ (1996) The purification and characterization of a novel d-specific carbamoylase enzyme from an Agrobacterium sp. Enzyme Microb Technol 19(8):562–571

    Article  CAS  Google Scholar 

  • Martínez-Gómez AI, Martínez-Rodríguez S, Clemente-Jiménez JM, Pozo-Dengra J, Rodríguez-Vico F, Las Heras-Vázquez FJ (2007) Recombinant polycistronic structure of hydantoinase process genes in Escherichia coli for the production of optically pure d-amino acids. Appl Environ Microbiol 73(5):1525–1531. doi:10.1128/aem.02365-06

    Article  Google Scholar 

  • Martínez-Gómez AI, Martínez-Rodríguez S, Pozo-Dengra J, Tessaro D, Servi S, Clemente-Jiménez JM, Rodríguez-Vico F, Las Heras-Vázquez FJ (2009) Potential application of N-carbamoyl-β-alanine amidohydrolase from Agrobacterium tumefaciens C58 for β-amino acid production. Appl Environ Microbiol 75(2):514–520. doi:10.1128/aem.01128-08

    Article  Google Scholar 

  • Martínez-Rodríguez S, Martínez-Gómez AI, Clemente-Jiménez JM, Rodríguez-Vico F, Garcia-Ruiz JM, Las Heras-Vázquez FJ, Gavira JA (2010) Structure of dihydropyrimidinase from Sinorhizobium meliloti CECT4114: new features in an amidohydrolase family member. J Struct Biol 169(2):200–208. doi:10.1016/j.jsb.2009.10.013

    Article  Google Scholar 

  • May O, Siemann M, Pietzsch M, Kiess M, Mattes R, Syldatk C (1998) Substrate-dependent enantioselectivity of a novel hydantoinase from Arthrobacter aurescens DSM 3745: purification and characterization as new member of cyclic amidases. J Biotechnol 61(1):1

    Article  CAS  Google Scholar 

  • Ogawa J, Shimizu S (1994) β-Ureidopropionase with N-carbamoyl-α-l-amino acid amidohydrolase activity from an aerobic bacterium, Pseudomonas putida IFO 12996. Eur J Biochem 223(2):625–630

    Article  CAS  Google Scholar 

  • Rehdorf J, Mihovilovic MD, Bornscheuer UT (2010) Exploiting the regioselectivity of Baeyer–Villiger monooxygenases for the formation of β-amino acids and β-amino alcohols. Angewandte Chemie International Edition 49(26):4506–4508. doi:10.1002/anie.201000511

    Article  CAS  Google Scholar 

  • Schnackerz KD, Dobritzsch D (2008) Amidohydrolases of the reductive pyrimidine catabolic pathway: purification, characterization, structure, reaction mechanisms and enzyme deficiency. Biochim Biophys Acta, Proteins Proteomics 1784(3):431–444

    Article  CAS  Google Scholar 

  • Scholl S, Koch A, Henning D, Kempter G, Kleinpeter E (1999) The influence of structure and lipophilicity of hydantoin derivatives on anticonvulsant activity. Struct Chem 10(5):355–366. doi:10.1023/a:1022091411018

    Article  CAS  Google Scholar 

  • Seebach D, Gardiner J (2008) β-Peptidic peptidomimetics. Acc Chem Res 41(10):1366–1375. doi:10.1021/ar700263g

    Article  CAS  Google Scholar 

  • Seebach D, Matthews JL (1997) β-Peptides: a surprise at every turn. Chem Commun (Cambridge, UK) 21:2015–2022

    Article  Google Scholar 

  • Siemann M, Alvarado-Marin A, Pietzsch M, Syldatk C (1999) A d-specific hydantoin amidohydrolase: properties of the metalloenzyme purified from Arthrobacter crystallopoietes. J Mol Catal B: Enzym 6(3):387

    Article  CAS  Google Scholar 

  • Stark GR, Smyth DG (1963) Use of cyanate for determination of NH2-terminal residues in proteins. J Biol Chem 238(1):214–226

    CAS  Google Scholar 

  • Steer DL, Lew RA, Perlmutter P, Smith AI, Aguilar M-I (2002) β2-Amino acids: versatile peptidomimetics. Curr Med Chem 9:811

    Article  CAS  Google Scholar 

  • Suzuki S, Henderson PJF (2006) The hydantoin transport protein from Microbacterium liquefaciens. J Bacteriol 188(9):3329–3336. doi:10.1128/Jb.188.9.3329-3336.2006

    Article  CAS  Google Scholar 

  • Suzuki T, Igarashi K, Hase K, Tuzimura K (1973) Optical-rotatory dispersion and circular-dichroism of amino-acid hydantoins. Agric Biol Chem 37(2):411–416

    Article  CAS  Google Scholar 

  • Syldatk C, Mackowiak V, Hoke H, Gross C, Dombach G, Wagner F (1990) Cell growth and enzyme synthesis of a mutant of Arthrobacter sp. (DSM 3747) used for the production of l-amino acids from dl-5-monosubstituted hydantoins. J Biotechnol 14(3–4):345

    Article  CAS  Google Scholar 

  • Tasnádi G, Forró E, Fülöp F (2008) An efficient new enzymatic method for the preparation of β-aryl-β-amino acid enantiomers. Tetrahedron: Asymmetry 19(17):2072–2077

    Article  Google Scholar 

  • Vogels GD, van der Drift C (1976) Degradation of purines and pyrimidines by microorganisms. Bacteriological Reviews 40(2):403–468

    CAS  Google Scholar 

  • Vuano BM, Pieroni OI, Cabaleiro MC (2000) Thermal reaction of cinnamic acid and of β-styrylphosphonic acid with urea. J Chem Res 7:318–320

    Article  Google Scholar 

  • Watabe K, Ishikawa T, Mukohara Y, Nakamura H (1992) Cloning and sequencing of the genes involved in the conversion of 5-substituted hydantoins to the corresponding l-amino acids from the native plasmid of Pseudomonas sp. strain NS671. J Bacteriol 174(3):962–969

    CAS  Google Scholar 

  • Weiner B, Szymanski W, Janssen DB, Minnaard AJ, Feringa BL (2010) Recent advances in the catalytic asymmetric synthesis of β-amino acids. Chem Soc Rev 39(5):1656–1691

    Article  CAS  Google Scholar 

  • Werner M, Las Heras-Vazques FJ, Fritz C, Vielhauer O, Siemann-Herzberg M, Altenbuchner J, Syldatk C (2004) Cloning of d-specific hydantoin utilization genes from Arthrobacter crystallopoietes. Eng Life Sci 4(6):563–572

    Article  CAS  Google Scholar 

  • Wu B, Szymanski W, Wietzes P, de Wildeman S, Poelarends GJ, Feringa BL, Janssen DB (2009) Enzymatic synthesis of enantiopure α- and β-amino acids by phenylalanine aminomutase-catalysed amination of cinnamic acid derivatives. ChemBioChem 10(2):338–344. doi:10.1002/cbic.200800568

    Article  CAS  Google Scholar 

  • Yokozeki K, Kubota K (1987) Enzymatic production of d-amino acids from 5-substituted hydantoins: 3. Mechanism of asymmetric production of d-amino acids from the corresponding hydantoins by Pseudomonas sp. Agric Biol Chem 51(3):721–728

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financed by the Federal Ministry of Science and Education (BMBF), Germany. Furthermore, the authors like to thank Gerd Unkelbach from Fraunhofer Institute for Chemical Technology for cooperation in the synthesis of the above-mentioned substrates. We also thank Professor Don Cowan for providing the soil samples for the screening experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Engel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engel, U., Syldatk, C. & Rudat, J. Stereoselective hydrolysis of aryl-substituted dihydropyrimidines by hydantoinases. Appl Microbiol Biotechnol 94, 1221–1231 (2012). https://doi.org/10.1007/s00253-011-3691-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3691-7

Keywords

Navigation