Advertisement

Applied Microbiology and Biotechnology

, Volume 93, Issue 1, pp 439–447 | Cite as

Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen

  • Jindřich ProcházkaEmail author
  • Petr Dolejš
  • Josef Máca
  • Michal Dohányos
Bioenergy and biofuels

Abstract

Ammonia increases buffer capacity of methanogenic medium in mesophilic anaerobic reactor thus increasing the stability of anaerobic digestion process. Optimal ammonia concentration ensures sufficient buffer capacity while not inhibiting the process. It was found out in this paper that this optimum depends on the quality of anaerobic sludge under investigation. The optimal concentrations for methanogens were 2.1, 2.6 and 3.1 g/L of ammonia nitrogen in dependence on inoculum origin. High ammonia nitrogen concentration (4.0 g/L) inhibited methane production, while low ammonia nitrogen concentration (0.5 g/L) caused low methane yield, loss of biomass (as VSS) and loss of the aceticlastic methanogenic activity. It was found out that negative effect of low ammonia nitrogen concentration on biomass is caused not only by low buffer capacity but also by insufficiency of nitrogen as nutrient. It was also found out that anaerobic sludge with higher ammonia nitrogen concentration (4.2 g/L) tolerates even concentration of volatile fatty acids (160 mmol/L) which causes inhibition of the process with low ammonia nitrogen concentration (0.2 g/L).

Keywords

Ammonia inhibition Anaerobic digestion Buffer capacity Process stability Volatile fatty acids 

Notes

Acknowledgements

This paper was supported by Ministry of Education project: “The study of chemical biological processes for the environmental protection, MSM6046137308” and from “Financial Support from Specific University Research (MSMT No. 21/2011)”. Authors would like to express gratitude to Lenka Vacková for her help.

References

  1. Alvarez R, Lidén G (2008) Semi-continuous co-digestion of solid slaughterhouse waste, manure, and fruit and vegetable waste. Renew Energy 33(4):726–734. doi: 10.1016/j.renene.2007.05.001 CrossRefGoogle Scholar
  2. American Public Health Association AWWA (1998) Standard methods for the examination of water and wastewater. Water Environ FedGoogle Scholar
  3. Angelidaki I, Ahring BK (1993) Thermophilic anaerobic digestion of livestock waste: the effect of ammonia. Appl Microbiol Biotechnol 38(4):560–564CrossRefGoogle Scholar
  4. Barredo MS, Evison LM (1991) Effect of propionate toxicity on methanogen-enriched sludge, Methanobrevibacter smithii, and Methanospirillum hungatii at different pH values. Appl Environ Microbiol 57(6):1764–1769Google Scholar
  5. Bartacek J, Zabranska J, Lens PNL (2007) Developments and constraints in fermentative hydrogen production. Biofuels Bioprod Biorefining 1(3):201–214. doi: 10.1002/bbb.17 CrossRefGoogle Scholar
  6. Braun R, Huber P, Meyrath J (1981) Ammonia toxicity in liquid piggery manure digestion. Biotechnol Lett 3(4):159–164CrossRefGoogle Scholar
  7. Demirel B, Scherer P (2008) The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Reviews Environ Sci Biotechnol 7(2):173–190CrossRefGoogle Scholar
  8. Eldem NÖ, Ozturk I, Soyer E, Calli B, Akgiray Ö (2004) Ammonia and pH inhibition in anaerobic treatment of wastewaters, part I: experimental. J Environ Sci Health A Tox Hazard Subst Environ Eng 39(9):2405–2420. doi: 10.1081/ese-200026297 CrossRefGoogle Scholar
  9. Fang C, Boe K, Angelidaki I (2011) Anaerobic co-digestion of desugared molasses with cow manure; focusing on sodium and potassium inhibition. Bioresour Technol 102(2):1005–1011. doi: 10.1016/j.biortech.2010.09.077 CrossRefGoogle Scholar
  10. Hafner SD, Bisogni JJ Jr (2009) Modeling of ammonia speciation in anaerobic digesters. Water Res 43(17):4105–4114. doi: 10.1016/j.watres.2009.05.044 CrossRefGoogle Scholar
  11. Hansen KH, Angelidaki I, Ahring BK (1998) Anaerobic digestion of swine manure: inhibition by ammonia. Water Res 32(1):5–12. doi: 10.1016/s0043-1354(97)00201-7 CrossRefGoogle Scholar
  12. Henze M, Harremoes P (1983) Anaerobic treatment of wastewater in fixed film reactors—a literature review. Water Sci Technol 15(8–9):1–101Google Scholar
  13. Horáková M (2003) Analytika vody. VŠCHT, PrahaGoogle Scholar
  14. Chen WH, Han SK, Sung S (2003) Sodium inhibition of thermophilic methanogens. J Environ Eng 129(6):506–512. doi: 10.1061/(asce)0733-9372(2003)129:6(506 CrossRefGoogle Scholar
  15. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99(10):4044–4064CrossRefGoogle Scholar
  16. Kraemer JT, Bagley DM (2007) Improving the yield from fermentative hydrogen production. Biotechnol Lett 29(5):685–695. doi: 10.1007/s10529-006-9299-9 CrossRefGoogle Scholar
  17. Liu T, Sung S (2002) Ammonia inhibition on thermophilic aceticlastic methanogens. Water Sci Technol 45(10):113–120Google Scholar
  18. Molinuevo-Salces B, García-González MC, González-Fernández C, Cuetos MJ, Morán A, Gómez X (2010) Anaerobic co-digestion of livestock wastes with vegetable processing wastes: a statistical analysis. Bioresour Technol 101(24):9479–9485. doi: 10.1016/j.biortech.2010.07.093 CrossRefGoogle Scholar
  19. Nakakubo R, Møller HB, Nielsen AM, Matsuda J (2008) Ammonia inhibition of methanogenesis and identification of process indicators during anaerobic digestion. Environ Eng Sci 25(10):1487–1496. doi: 10.1089/ees.2007.0282 CrossRefGoogle Scholar
  20. Nakashimada Y, Ohshima Y, Minami H, Yabu H, Namba Y, Nishio N (2008) Ammonia-methane two-stage anaerobic digestion of dehydrated waste-activated sludge. Appl Microb and Biotechnol 79(6):1061–1069. doi: 10.1007/s00253-008-1501-7 CrossRefGoogle Scholar
  21. Schnürer A, Nordberg Å (2008) Ammonia, a selective agent for methane production by syntrophic acetate oxidation at mesophilic temperature. Water Sci Technol 57:735–740CrossRefGoogle Scholar
  22. Sossa K, Alarcón M, Aspé E, Urrutia H (2004) Effect of ammonia on the methanogenic activity of methylaminotrophic methane producing Archaea enriched biofilm. Anaerobe 10(1):13–18CrossRefGoogle Scholar
  23. Steinhaus B, Garcia ML, Shen AQ, Angenent LT (2007) A portable anaerobic microbioreactor reveals optimum growth conditions for the methanogen Methanosaeta concilii. Appl Environ Microbiol 73(5):1653–1658. doi: 10.1128/aem.01827-06 CrossRefGoogle Scholar
  24. Sterling MC Jr, Lacey RE, Engler CR, Ricke SC (2001) Effects of ammonia nitrogen on H2 and CH4 production during anaerobic digestion of dairy cattle manure. Bioresour Technol 77(1):9–18. doi: 10.1016/s0960-8524(00)00138-3 CrossRefGoogle Scholar
  25. Sung S, Liu T (2003) Ammonia inhibition on thermophilic anaerobic digestion. Chemosphere 53(1):43–52. doi: 10.1016/s0045-6535(03)00434-x CrossRefGoogle Scholar
  26. Takashima M, Speece RE (1989) Mineral nutrient requirements for high-rate methane fermentation of acetate at low SRT. Res J Water Pollut Control Fed 61(11–12):1645–1650Google Scholar
  27. Wang Y, Zhang Y, Wang J, Meng L (2009) Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria. Biomass Bioenergy 33(5):848–853. doi: 10.1016/j.biombioe.2009.01.007 CrossRefGoogle Scholar
  28. Wittmann C, Zeng AP, Deckwer WD (1995) Growth inhibition by ammonia and use of a pH-controlled feeding strategy for the effective cultivation of Mycobacterium chloropheolicum. Appl Microbiol Biotechnol 44(3–4):519–525CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jindřich Procházka
    • 1
    Email author
  • Petr Dolejš
    • 1
  • Josef Máca
    • 1
  • Michal Dohányos
    • 1
  1. 1.Faculty of Environmental Technology, Department of Water Technology and Environmental EngineeringInstitute of Chemical Technology PraguePrague 6Czech Republic

Personalised recommendations