Skip to main content


Log in

Mannitol production by heterofermentative Lactobacillus reuteri CRL 1101 and Lactobacillus fermentum CRL 573 in free and controlled pH batch fermentations

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript


Certain lactic acid bacteria, especially heterofermentative strains, are capable to produce mannitol under adequate culture conditions. In this study, mannitol production by Lactobacillus reuteri CRL 1101 and Lactobacillus fermentum CRL 573 in modified MRS medium containing a mixture of fructose and glucose in a 6.5:1.0 ratio was investigated during batch fermentations with free pH and constant pH 6.0 and 5.0. Mannitol production and yields were higher under constant pH conditions compared with fermentations with free pH, the increase being more pronounced in the case of the L. fermentum strain. Maximum mannitol production and yields from fructose for L. reuteri CRL 1101 (122 mM and 75.7 mol%, respectively) and L. fermentum CRL 573 (312 mM and 93.5 mol%, respectively) were found at pH 5.0. Interestingly, depending on the pH conditions, fructose was used only as an alternative external electron acceptor or as both electron acceptor and energy source in the case of the L. reuteri strain. In contrast, L. fermentum CRL 573 used fructose both as electron acceptor and carbon source simultaneously, independently of the pH value, which strongly affected mannitol production by this strain. Studies on the metabolism of these relevant mannitol-producing lactobacilli provide important knowledge to either produce mannitol to be used as food additive or to produce it in situ during fermented food production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others


  • Carvalheiro F, Moniz P, Duarte LC, Esteves MP, Gírio FM (2011) Mannitol production by lactic acid bacteria grown in supplemented carob syrup. J Ind Microbiol Biotechnol 38:221–227

    Article  CAS  Google Scholar 

  • De Vuyst L, Vrancken G, Ravyts F, Rimaux T, Weckx S (2009) Biodiversity, ecological determinants, and metabolic exploitation of sourdough microbiota. Food Microbiol 26:666–675

    Article  Google Scholar 

  • Debord B, Lefebvre C, Guyot-Hermann AM, Hubert J, Bouche R, Guyot JC (1987) Study of different forms of mannitol: comparative behaviour under compression. Drug Dev Ind Pharm 13:1533–1546

    Article  CAS  Google Scholar 

  • Eaton KA, Honkala A, Auchtung TA, Britton RA (2011) Probiotic Lactobacillus reuteri ameliorates disease due to enterohemorrhagic Escherichia coli in germfree mice. Infect Immun 79:185–191

    Article  CAS  Google Scholar 

  • Fernandez M, Zuñiga M (2006) Amino acid catabolic pathways of lactic acid bacteria. Crit Rev Microbiol 32:155–183

    Article  CAS  Google Scholar 

  • Hammes WP, Stoltz P, Gänzle MG (1996) Metabolism in lactobacilli in traditional sourdoughs. Adv Food Sci 18:176–184

    CAS  Google Scholar 

  • Hugenholtz J (2008) The lactic acid bacterium as a cell factory for food ingredient production. Int Dairy J 18:466–475

    Article  CAS  Google Scholar 

  • Hugenholtz J, Smid EJ (2002) Nutraceutical production with food-grade microorganisms. Curr Opin Biotechnol 13:497–507

    Article  CAS  Google Scholar 

  • Korakli M, Vogel RF (2003) Purification and characterization of mannitol dehydrogenase from Lactobacillus sanfranciscensis. FEMS Microbiol Lett 220:281–286

    Article  CAS  Google Scholar 

  • Korakli M, Schwarz E, Wolf G, Hammes WP (2000) Production of mannitol by Lactobacillus sanfranciscensis. Adv Food Sci 22:1–4.

    CAS  Google Scholar 

  • Leroy F, De Vuyst L (2004) Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol 15:67–78

    Article  CAS  Google Scholar 

  • Liu Y, Fatheree NY, Mangalat N, Rhoads JM (2010) Human-derived probiotic Lactobacillus reuteri strains differentially reduce intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 299:1087–1096

    Article  Google Scholar 

  • Livesey G (2003) Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties. Nutr Res Rev 16:163–191

    Article  CAS  Google Scholar 

  • Makras L, Van Acker G, De Vuyst L (2005) Lactobacillus paracasei subsp. paracasei 8700:2 degrades inulin-type fructans exhibiting different degrees of polymerization. Appl Environ Microbiol 71:6531–6537

    Article  CAS  Google Scholar 

  • Monedero V, Pérez-Martínez G, Yebra MJ (2010) Perspectives of engineering lactic acid bacteria for biotechnological polyol production. Appl Microbiol Biotechnol 86:1003–1015

    Article  CAS  Google Scholar 

  • Padonou WS, Nielsen DS, Hounhouigan JD, Thorsen L, Nago MC, Jakobsen M (2009) The microbiota of Lafun, an African traditional cassava food product. Int J Food Microbiol 133:22–30

    Article  Google Scholar 

  • Padonou SW, Nielsen DS, Akissoe NH, Hounhouigan JD, Nago MC, Jakobsen M (2010) Development of starter culture for improved processing of Lafun, an African fermented cassava food product. J Appl Microbiol 109:1402–1410

    Article  CAS  Google Scholar 

  • Racine FM, Saha BC (2007) Production of mannitol by Lactobacillus intermedius NRRL B-3693 in fed-batch and continuous cell-recycle fermentations. Proc Biochem 42:1609–1613

    Article  CAS  Google Scholar 

  • Richter H, De Graaf AA, Hammann I, Unden G (2003a) Significance of phosphoglucose isomerase for the shift between heterolactic and mannitol fermentation of fructose by Oenococcus oeni. Arch Microbiol 180:465–470

    Article  CAS  Google Scholar 

  • Richter H, Hammann I, Unden G (2003b) Use of the mannitol pathway in fructose fermentation of Oenococcus oeni due to limiting redox regeneration capacity of the ethanol pathway. Arch Microbiol 179:227–233

    CAS  Google Scholar 

  • Saha B, Nakamura LK (2003) Production of mannitol and lactic acid by fermentation with Lactobacillus intermedius. Biotechnol Prog 20:537–542

    Article  Google Scholar 

  • Saha BC, Racine FM (2011) Biotechnological production of mannitol and its applications. Appl Microbiol Biotechnol 89:879–891

    Article  CAS  Google Scholar 

  • Shen B, Jensen RG, Bohnert HJ (1997) Mannitol protects against oxidation by hydroxyl radicals. Plant Physiol 115:527–532

    CAS  Google Scholar 

  • Smid EJ, Molenaar D, Hugenholtz J, de Vos WM, Teusink B (2005) Functional ingredient production: application of global metabolic models. Current Opin Biotechnol 16:190–197.

    Article  CAS  Google Scholar 

  • Soetaert W, Vanhooren PT, Vandamme E (1999) Production of mannitol by fermentation. In: Bucke C (ed) Carbohydrate Biotechnology Protocols, Vol 10, Series: Methods in Biotechnology. Humana Press Inc, Totowa, NJ, pp 261–275

    Chapter  Google Scholar 

  • Stanton C, Ross RP, Fitzgerald GF, Van Sinderen D (2005) Fermented functional foods based on probiotics and their biogenic metabolites. Curr Opin Biotechnol 16:198–203

    Article  CAS  Google Scholar 

  • Von Weymarn N (2002) Process development for mannitol production by lactic acid bacteria. PhD Thesis. Helsinky University of Technology, Finland.

  • von Weymarn N, Hujanen M, Leisola M (2002) Production of d-mannitol by heterofermentative lactic acid bacteria. Proc Biochem 37:1207–1213

    Article  Google Scholar 

  • von Weymarn FNW, Kiviharju KJ, Jääskeläinen ST, Leisola MSA (2003) Scale-up of a new bacterial mannitol production process. Biotechnol Prog 19:815–821

    Article  Google Scholar 

  • Vrancken G, Rimaux T, De Vuyst L, Leroy F (2008) Kinetic analysis of growth and sugar consumption by Lactobacillus fermentum IMDO 130101 reveals adaptation to the acidic sourdough ecosystem. Int J Food Microbiol 128:58–66

    Article  CAS  Google Scholar 

  • Vrancken G, Rimaux T, De Vuyst L, Mozzi F (2010) Low-calorie sugars produced by lactic acid bacteria. In: Raya RR, Vignolo GM (eds) Mozzi F. Biotechnology of lactic acid bacteria. Novel applications. Wiley-Blackwell, Ames, USA, pp 193–209

    Google Scholar 

  • Yousif NM, Huch M, Schuster T, Cho GS, Dirar HA, Holzapfel WH, Franz CM (2010) Diversity of lactic acid bacteria from Hussuwa, a traditional African fermented sorghum food. Food Microbiol 27:757–768

    Article  CAS  Google Scholar 

  • Wisselink HW, Weushuis RA, Eggink G, Hugenholtz J, Grobben GJ (2002) Mannitol production by lactic acid bacteria: a review. Int Dairy J 12:151–161

    Article  CAS  Google Scholar 

  • Wisselink HW, Moers APHA, Mars AE, Hoefnagel MHN, de Vos WM, Hugenholtz J (2005) Overproduction of heterologous mannitol 1-phosphatase: a key factor for engineering mannitol production by Lactococcus lactis. Appl Environ Microbiol 71:1507–1514.

    Article  CAS  Google Scholar 

  • Wood BJB (1997) Microbiology of fermented foods. Blackie Academic and Professional, London, UK

    Book  Google Scholar 

  • Zaunmüller T, Eichert M, Richter H, Unden G (2006) Variations in the energy metabolism of biotechnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids. Appl Microbiol Biotechnol 72:421–429

    Article  Google Scholar 

Download references


We acknowledge the financial support of CONICET, FONCyT, and MINCyT from Argentina and FWO-Flanders from Belgium (bilateral scientific cooperation project FWO/06/01), the cultural agreement between CONICET-Argentina and IMDO-Vrije Universiteit Brussel, and the Research Council of the Vrije Universiteit Brussel.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Fernanda Mozzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez, C., Rimaux, T., Fornaguera, M.J. et al. Mannitol production by heterofermentative Lactobacillus reuteri CRL 1101 and Lactobacillus fermentum CRL 573 in free and controlled pH batch fermentations. Appl Microbiol Biotechnol 93, 2519–2527 (2012).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: