Skip to main content

Advertisement

Log in

Coexpression of chaperonin GroEL/GroES markedly enhanced soluble and functional expression of recombinant human interferon-gamma in Escherichia coli

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Recombinant human interferon-gamma (rhIFN-γ) is a protein of great potential for clinical therapy due to its multiple biological activities. However, overexpressing rhIFN-γ in Escherichia coli was found to accumulate as cytoplasmic inclusion bodies. In this work, a system for soluble and active expression of rhIFN-γ was constructed by coexpressing chaperonin GroEL/GroES in E. coli. The rhIFN-γ gene was fused to a pET-28a expression vector, and rhIFN-γ was partially expressed as the soluble form following coexpression with a second vector producing chaperonin GroEL/GroES. The fermentation of recombinant E. coli harboring rhIFN-γ and GroEL/GroES plasmids was investigated, and the optimized conditions were as follows: culture temperature of 25°C, incubation time of 8 h, isopropyl-β-d-thio-galactoside concentration of 0.2 mM, and l-arabinose concentration of 0.5 g/L. As a result, the expression level of rhIFN-γ was improved accordingly by 2.2-fold than the control, while a significantly positive correlation was also found between the ratio of supernatant to precipitate of rhIFN-γ and the amount of chaperonin. Circular dichroism spectra, fluorescence spectra, size exclusion chromatography, and chemical cross-linking method were applied to characterize rhIFN-γ, indicating that the three-dimensional structure of rhIFN-γ was identical to that of the native rhIFN-γ. The enzyme-linked immunosorbent assay for active rhIFN-γ quantification showed that coexpression yielded 72.91 mg rhIFN-γ per liter fermentation broth. Finally, protein–protein interactions between rhIFN-γ and chaperonin were analyzed using the yeast two-hybrid system, which provided the direct evidence that chaperonin GroEL/GroES interacted with rhIFN-γ to increase the soluble expression and presented the potential in producing efficiently recombinant proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bendixen C, Gangloff S, Rothstein R (1994) A yeast mating-selection scheme for detection of protein–protein interactions. Nucleic Acids Res 22:1778–1779

    Article  CAS  Google Scholar 

  • Blalock JE, Georgiades JA, Langford MP, Johnson HM (1980) Purified human immune interferon has more potent anticellular activity than fibroblast or leukocyte interferon. Cell Immunol 49:390–394

    Article  CAS  Google Scholar 

  • Brusehaber E, Schwiebs A, Schmidt M, Bottcher D, Bornscheuer UT (2010) Production of pig liver esterase in batch fermentation of E. coli Origami. Appl Microbiol Biotechnol 86:1337–1344

    Article  Google Scholar 

  • Contreras JAR, Pedraza-Reyes M, Ordonez LG, Estrada NU, de la Rosa APB, De Leon-Rodriguez A (2010) Replicative and integrative plasmids for production of human interferon gamma in Bacillus subtilis. Plasmid 64:170–176

    Article  Google Scholar 

  • Ealick SE, Cook WJ, Vijay-Kumar S, Carson M, Nagabhushan TL, Trotta PP, Bugg CE (1991) Three-dimensional structure of recombinant human interferon-gamma. Science 252:698–702

    Article  CAS  Google Scholar 

  • Ellerhorst JA, Kilbourn RG, Amato RJ, Zukiwski AA, Jones E, Logothetis CJ (1994) Phase-II trial of low-dose gamma-interferon in metastatic renal-cell carcinoma. J Urol 152:841–845

    CAS  Google Scholar 

  • Fenton WA, Horwich AL (1997) GroEL-mediated protein folding. Protein Sci 6(4):743–760

    Article  CAS  Google Scholar 

  • Gao YG, Guan YX, Yao SJ, Cho MG (2003) On-column refolding of recombinant human interferon-gamma with an immobilized chaperone fragment. Biotechnol Prog 19:915–920

    Article  CAS  Google Scholar 

  • Giannopoulos A, Constantinides C, Fokaeas E, Stravodimos C, Giannopoulou M, Kyroudi A, Gounaris A (2003) The immunomodulating effect of interferon-γ intravesical instillations in preventing bladder cancer recurrence. Clin Cancer Res 9:5550–5558

    CAS  Google Scholar 

  • Gietz D, St. Jean A, Woods RA, Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20:1425

    Article  CAS  Google Scholar 

  • Gnoth S, Simutis R, Lubbert A (2010) Selective expression of the soluble product fraction in Escherichia coli cultures employed in recombinant protein production processes. Appl Microbiol Biotechnol 87:2047–2058

    Article  CAS  Google Scholar 

  • Goloubinoff P, Diamant S, Weiss C, Azem A (1997) GroES binding regulates GroEL chaperonin activity under heat shock. FEBS Lett 407:215–219

    Article  CAS  Google Scholar 

  • Gray PW, Leung DW, Pennica D, Yelverton E, Najarian R, Simonsen CC, Derynck R, Sherwood PJ, Wallace DM, Berger SL (1982) Expression of human immune interferon cDNA in E. coli and monkey cells. Nature 295:503–508

    Article  CAS  Google Scholar 

  • Gupta P, Aggarwal N, Batra P, Mishra S, Chaudhuri TK (2006) Co-expression of chaperonin GroEL/GroES enhances in vivo folding of yeast mitochondrial aconitase and alters the growth characteristics of Escherichia coli. Int J Biochem Cell Biol 38:1975–1985

    Article  CAS  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    Article  CAS  Google Scholar 

  • Hernandez VEB, Maldonado L, Rivero EM, de la Rosa APB, Jimenez-Bremont JF, Acevedo LGO, Rodriguez ADL (2008) Periplasmic expression and recovery of human interferon gamma in Escherichia coli. Protein Expression Purif 59:169–174

    Google Scholar 

  • Houry WA, Frishman D, Eckerskorn C, Lottspeich F, Hartl FU (1999) Identification of in vivo substrates of the chaperonin GroEL. Nature 402:147–154

    Article  CAS  Google Scholar 

  • Hsieh CA (2010) Expression and purification of recombinant human interferon-γ and interleukin-12 employing starch binding domain. Dissertation, National Tsing Hua University, Hsinchu City, Taiwan

  • Jin T, Guan YX, Yao SJ, Lin DQ, Cho MG (2006) On-column refolding of recombinant human interferon-γ inclusion bodies by expanded bed adsorption chromatography. Biotechnol Bioeng 93:755–760

    Article  CAS  Google Scholar 

  • Kerner MJ, Naylor DJ, Ishihama Y, Maier T, Chang HC, Stines AP, Georgopoulos C, Frishman D, Hayer-Hartl M, Mann M (2005) Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122:209–220

    Article  CAS  Google Scholar 

  • Kim SY, Heo MA, Jeong YJ (2009) Improving the productivity of recombinant protein in Escherichia coli under thermal stress by coexpressing GroELS chaperone system. J Microbiol Biotechnol 19:72–77

    CAS  Google Scholar 

  • Levitt M, Chothia C (1976) Structural patterns in globular proteins. Nature 261:552–558

    Article  CAS  Google Scholar 

  • Liberek K, Lewandowska A, Zietkiewicz S (2008) Chaperones in control of protein disaggregation. EMBO J 27:328–335

    Article  CAS  Google Scholar 

  • Marth C, Windbichler GH, Hausmaninger H, Petru E, Estermann K, Pelzer A, Mueller-Holzner E (2006) Interferon-gamma in combination with carboplatin and paclitaxel as a safe and effective first-line treatment option for advanced ovarian cancer: results of a phase I/II study. Int J Gynecol Cancer 16:1522–1528

    Article  CAS  Google Scholar 

  • Matsushita K, Takenouchi T, Shimada H, Tomonaga T, Hayashi H, Shioya A, Komatsu A, Matsubara H, Ochiai T (2006) Strong HLA-DR antigen expression on cancer cells relates to better prognosis of colorectal cancer patients: Possible involvement of c-myc suppression by interferon-gamma in situ. Cancer Sci 97:57–63

    Article  CAS  Google Scholar 

  • Miller CHT, Maher SG, Young HA (2009) Clinical use of interferon-γ. Ann NY Acad Sci 1182:69–79

    Article  CAS  Google Scholar 

  • Moon HJ, Jeya M, Yu IS, Ji JH, Oh DK, Lee JK (2009) Chaperone-aided expression of LipA and LplA followed by the increase in alpha-lipoic acid production. Appl Microbiol Biotechnol 83:329–337

    Article  CAS  Google Scholar 

  • Nishihara K, Kanemori M, Kitagawa M, Yanagi H, Yura T (1998) Chaperone coexpression plasmids: differential and synergistic roles of DnaK–DnaJ–GrpE and GroEL–GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2 in Escherichia coli. Appl Environ Microbiol 64:1694–1699

    CAS  Google Scholar 

  • Parvez MK, Sehgal D, Sarin SK, Basir SF, Jameel S (2006) Inhibition of hepatitis B virus DNA replicative intermediate forms by recombinant interferon-gamma. World J Gastroenterol 12:3006–3014

    CAS  Google Scholar 

  • Reddy PK, Reddy SG, Narala VR, Majee SS, Konda S, Gunwar S, Reddy RC (2007) Increased yield of high purity recombinant human interferon-gamma utilizing reversed phase column chromatography. Protein Expression Purif 52:123–130

    Article  CAS  Google Scholar 

  • Rubin BY, Gupta SL (1980) Differential efficacies of human type I and type II interferons as antiviral and antiproliferative agents. Proc Natl Acad Sci U S A 77:5928–5932

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schoenborn JR, Wilson CB (2007) Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol 96:41–101

    Article  CAS  Google Scholar 

  • Sharon MK, Thomas JJ, Nicholas CP (2005) How to study proteins by circular dichroism. Biochim Biophys Acta 1751:119–139

    Google Scholar 

  • Sigidin YA, Loukina GV, Skurkovich B, Skurkovich S (2001) Randomized, double-blind trial of anti-interferon-gamma antibodies in rheumatoid arthritis. Scand J Rheumatol Suppl 30:203–207

    Article  CAS  Google Scholar 

  • Stefani M, Dobson CM (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med 81:678–699

    Article  CAS  Google Scholar 

  • Suárez-Méndez R, García-García I, Fernández-Olivera N, Valdés-Quintana M, Milanés-Virelles MT, Carbonell D, Machado-Molina D, Valenzuela-Silva CM, López-Saura PA (2004) Adjuvant interferon gamma in patients with drug-resistant pulmonary tuberculosis: a pilot study. BMC Infect Dis 4:44

    Article  Google Scholar 

  • Tsaprailis G, Chan DWS, English AM (1998) Conformational states in denaturants of cytochrome c and horseradish peroxidases examined by fluorescence and circular dichroism. Biochemistry 37:2004–2016

    Article  CAS  Google Scholar 

  • Vandenbroeck K, Billiau A (1998) Interferon-gamma is a target for binding and folding by both Escherichia coli chaperone model systems GroEL/GroES and DnaK/DnaJ/GrpE. Biochimie 80:729–737

    Article  CAS  Google Scholar 

  • Vandenbroeck K, Martens E, Dandrea S, Billiau A (1993) Refolding and single-step purification of porcine interferon-gamma from Escherichia coli inclusion bodies. Eur J Biochem 215:481–486

    Article  CAS  Google Scholar 

  • Vandenbroeck K, Martens E, Billiau A (1998) GroEL/ES chaperonins protect interferon-gamma against physicochemical stress–study of tertiary structure formation by alpha-casein quenching and ELISA. Eur J Biochem 251:181–188

    Article  CAS  Google Scholar 

  • Vanstokkum IHM, Spoelder HJW, Bloemendal M, Vangrondelle R, Groen FCA (1990) Estimation of protein secondary structure and error analysis from circular-dichroism spectra. Anal Biochem 191:110–118

    Article  CAS  Google Scholar 

  • Whitmore L, Wallace BA (2008) Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89:392–400

    Article  CAS  Google Scholar 

  • Zhang Z, Tong KT, Belew M, Pettersson T, Janson JC (1992) Production, purification and characterization of recombinant human interferon-gamma. J Chromatogr A 604:143–155

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (no. 20876138).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Xin Guan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, X., Hu, S., Guan, YX. et al. Coexpression of chaperonin GroEL/GroES markedly enhanced soluble and functional expression of recombinant human interferon-gamma in Escherichia coli . Appl Microbiol Biotechnol 93, 1065–1074 (2012). https://doi.org/10.1007/s00253-011-3599-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3599-2

Keywords

Navigation