Skip to main content
Log in

Flocculation in ale brewing strains of Saccharomyces cerevisiae: re-evaluation of the role of cell surface charge and hydrophobicity

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Flocculation is an eco-friendly process of cell separation, which has been traditionally exploited by the brewing industry. Cell surface charge (CSC), cell surface hydrophobicity (CSH) and the presence of active flocculins, during the growth of two (NCYC 1195 and NCYC 1214) ale brewing flocculent strains, belonging to the NewFlo phenotype, were examined. Ale strains, in exponential phase of growth, were not flocculent and did not present active flocculent lectins on the cell surface; in contrast, the same strains, in stationary phase of growth, were highly flocculent (>98%) and presented a hydrophobicity of approximately three to seven times higher than in exponential phase. No relationship between growth phase, flocculation and CSC was observed. For comparative purposes, a constitutively flocculent strain (S646-1B) and its isogenic non-flocculent strain (S646-8D) were also used. The treatment of ale brewing and S646-1B strains with pronase E originated a loss of flocculation and a strong reduction of CSH; S646-1B pronase E-treated cells displayed a similar CSH as the non-treated S646-8D cells. The treatment of the S646-8D strain with protease did not reduce CSH. In conclusion, the increase of CSH observed at the onset of flocculation of ale strains is a consequence of the presence of flocculins on the yeast cell surface and not the cause of yeast flocculation. CSH and CSC play a minor role in the auto-aggregation of the ale strains since the degree of flocculation is defined, primarily, by the presence of active flocculins on the yeast cell wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amory DE, Rouxhet PG (1988) Surface-properties of Saccharomyces cerevisiae and Saccharomyces carlsbergensis—chemical composition, electrostatic charge and hydrophobicity. BBA-Biomembranes 938:61–70

    Article  CAS  Google Scholar 

  • Amory DE, Rouxhet PG, Dufour JP (1988) Flocculence of brewery yeasts and their surface properties: chemical composition, electrostatic charge and hydrophobicity. J Inst Brew 94:79–84

    CAS  Google Scholar 

  • Bauer FF, Govender P, Bester MC (2010) Yeast flocculation and its biotechnological relevance. Appl Microbiol Biotechnol 88:31–39

    Article  CAS  Google Scholar 

  • Bayly JC, Douglas LM, Pretorius IS, Bauer FF, Dranginis AM (2005) Characteristics of Flo11-dependent flocculation in Saccharomyces cerevisiae. FEMS Microbiol Lett 5:1151–1156

    CAS  Google Scholar 

  • Beavan MJ, Blik DM, Stewart GG, Rose AH (1979) Changes in electrophoretic mobility and lytic enzyme activity associated with development of flocculating ability in Saccharomyces cerevisiae. Can J Microbiol 25:888–895

    Article  CAS  Google Scholar 

  • de Groot PWJ, Hellingwerf KJ, Klis FM (2003) Genome-wide identification of fungal GPI proteins. Yeast 20:781–796

    Article  Google Scholar 

  • Dengis PB, Rouxhet PG (1997) Surface properties of top- and bottom-fermenting yeast. Yeast 13:931–943

    Article  CAS  Google Scholar 

  • Dengis PB, Nélissen LR, Rouxhet PG (1995) Mechanisms of yeast flocculation: comparison of top and bottom-fermenting strains. Appl Environ Microbiol 61(2):718–728

    CAS  Google Scholar 

  • Dranginis AM, Rauceo JM, Coronado JE, Lipke PN (2007) A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. Microbiol Mol Biol Rev 71:282–294

    Article  CAS  Google Scholar 

  • Fidalgo M, Barrales RR, Ibeas JI, Jimenez J (2006) Adaptive evolution by mutations in the FLO11 gene. Proc Natl Acad Sci U S A 103:11228–11233

    Article  CAS  Google Scholar 

  • Gouveia C, Soares EV (2004) Pb2+ inhibits competitively flocculation of Saccharomyces cerevisiae. J Inst Brew 110:141–145

    CAS  Google Scholar 

  • Govender P, Domingo JL, Bester MC, Pretorius IS, Bauer FF (2008) Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae. Appl Environ Microbiol 74:6041–6052

    Article  CAS  Google Scholar 

  • Govender P, Bester M, Bauer FF (2010) FLO gene-dependent phenotypes in industrial wine yeast strains. Appl Microbiol Biotechnol 86:931–945

    Article  CAS  Google Scholar 

  • Guo B, Styles CA, Feng Q, Fink G (2000) A Saccharomyces gene family involved in invasive growth, cell–cell adhesion, and mating. Proc Natl Acad Sci USA 97(22):12158–12163

    Article  CAS  Google Scholar 

  • Hsu JWC, Speers RA, Paulson AT (2001) Modeling of orthokinetic flocculation of Saccharomyces cerevisiae. Biophys Chem 94:47–58

    Article  CAS  Google Scholar 

  • Jayatissa PM, Rose AH (1976) Role of wall phosphomannan in flocculation of Saccharomyces cerevisiae. J Gen Microbiol 96:165–174

    CAS  Google Scholar 

  • Jin Y, Speers RA (2000) Effect of environmental conditions on the flocculation of Saccharomyces cerevisiae. J Am Soc Brew Chem 58(3):108–116

    CAS  Google Scholar 

  • Jin Y, Ritcey LL, Speers RA (2001) Effect of cell surface hydrophobicity, charge, and zymolectin density on the flocculation of Saccharomyces cerevisiae. J Am Soc Brew Chem 59(1):1–9

    CAS  Google Scholar 

  • Kobayashi O, Hayashi N, Kuroki R, Sone H (1998) Region of Flo1 proteins responsible for sugar recognition. J Bacteriol 180(24):6503–6510

    CAS  Google Scholar 

  • Mestdagh MM, Rouxhet PG, Dufour JP (1990) Surface chemistry and flocculation of brewery yeast. Ferment 3:31–37

    Google Scholar 

  • Miki BLA, Poon NH, James AP, Seligy VL (1982) Possible mechanism for flocculation interactions governed by gene FLO1 in Saccharomyces cerevisiae. J Bacteriol 150:878–889

    CAS  Google Scholar 

  • Mortensen HD, Dupont K, Jespersen L, Willats WGT, Arneborg N (2007) Identification of amino acids involved in the Flo11p-mediated adhesion of Saccharomyces cerevisiae to a polystyrene surface using phage display with competitive elution. J Appl Microbiol 103:1041–1047

    Article  CAS  Google Scholar 

  • Mortier A, Soares EV (2007) Separation of yeasts by addition of flocculent cells of Saccharomyces cerevisiae. World J Microbiol Biotechnol 23:1401–1407

    Article  Google Scholar 

  • Mulders SEV, Christianen E, Saerens SMG, Daenen L, Verbelen PJ, Willaert R, Verstrepen KJ, Delvaux FR (2009) Phenotypic diversity of Flo protein family-mediated adhesion in Saccharomyces cerevisiae. FEMS Yeast Res 9:178–190

    Article  Google Scholar 

  • Patelakis SJJ, Ritcey LL, Speers RA (1998) Density of lectin-like receptors in the Flo1 phenotype of Saccharomyces cerevisiae. Lett Appl Microbiol 26:279–282

    Article  CAS  Google Scholar 

  • Reynolds TB, Fink GR (2001) Bakers’ yeast, a model for fungal biofilm formation. Science 291:878–881

    Article  CAS  Google Scholar 

  • Rhymes MR, Smart K (2000) The relationship between flocculation and cell surface physical properties in a FLO1 ale yeast. In: Smart K (ed) Brewing yeast fermentation performance. Blackwell Science, Ltd, Oxford, pp 152–159

    Google Scholar 

  • Rhymes MR, Smart KA (2001) Effect of storage conditions on the flocculation and cell wall characteristics of an ale brewing yeast strain. J Am Soc Brew Chem 59:32–38

    CAS  Google Scholar 

  • Rigden DJ, Mello LV, Galperin MY (2004) The PA14 domain, a conserved all-β domain in bacterial toxins, enzymes, adhesins and signaling molecules. Trends Biochem Sci 29:335–339

    Article  CAS  Google Scholar 

  • Rosenberg M (2006) Microbial adhesion to hydrocarbons: twenty-five years of doing MATH. FEMS Microbiol Lett 262:129–134

    Article  CAS  Google Scholar 

  • Sampermans S, Mortier J, Soares EV (2005) Flocculation onset in Saccharomyces cerevisiae: the role of nutrients. J Appl Microbiol 98:525–531

    Article  CAS  Google Scholar 

  • Smit G, Straver MH, Lugtenberg BJJ, Kijne JW (1992) Flocculence of Saccharomyces cerevisiae cells is induced by nutrient limitation, with cell surface hydrophobicity as a major determinant. Appl Environ Microbiol 58(11):3709–3714

    CAS  Google Scholar 

  • Soares EV (2011) Flocculation in Saccharomyces cerevisiae: a review. J Appl Microbiol 110:1–18

    Article  CAS  Google Scholar 

  • Soares EV, Mota M (1996) Flocculation onset, growth phase, and genealogical age in Saccharomyces cerevisiae. Can J Microbiol 42:539–547

    Article  CAS  Google Scholar 

  • Soares EV, Seynaeve J (2000) Induction of flocculation of brewer’s yeast strains of Saccharomyces cerevisiae by changing the calcium concentration and pH of culture medium. Biotechnol Lett 22:1827–1832

    Article  CAS  Google Scholar 

  • Soares EV, Vroman A (2003) Effect of different starvation conditions on the flocculation of Saccharomyces cerevisiae. J Appl Microbiol 95:325–330

    Article  CAS  Google Scholar 

  • Soares EV, Teixeira JA, Mota M (1994) Effect of cultural and nutritional conditions on the control of flocculation expression in Saccharomyces cerevisiae. Can J Microbiol 40:851–857

    Article  CAS  Google Scholar 

  • Speers RA, Smart K, Stewart R, Jin Y (1998) Zymolectins in Saccharomyces cerevisiae. J Inst Brew 104:298

    Google Scholar 

  • Speers RA, Wan Y-Q, Jin Y, Stewart RJ (2006) Effects of fermentation parameters and cell wall properties on yeast flocculation. J Inst Brew 112(3):246–254

    CAS  Google Scholar 

  • Stewart GG (2009) The Horace Brown medal lecture: forty years of brewing research. J Inst Brew 115:3–29

    CAS  Google Scholar 

  • Stratford M (1993) Yeast flocculation: flocculation onset and receptor availability. Yeast 9:85–94

    Article  CAS  Google Scholar 

  • Stratford M (1996) Induction of flocculation in brewing yeasts by change in pH value. FEMS Microbiol Lett 136:13–18

    Article  CAS  Google Scholar 

  • Stratford M, Assinder S (1991) Yeast flocculation: Flo1 and newFlo phenotypes and receptor structure. Yeast 7:559–574

    Article  CAS  Google Scholar 

  • Straver MH, Aar PCVD, Smit G, Kijne JW (1993) Determinants of flocculence of brewer’s yeast during fermentation in wort. Yeast 9:527–532

    Article  CAS  Google Scholar 

  • Teunissen AWRH, Van Den Berg JA, Steensma HY (1995) Transcriptional regulation of flocculation genes in Saccharomyces cerevisiae. Yeast 11:435–446

    Article  CAS  Google Scholar 

  • Touhami A, Hoffmann B, Vasella A, Denis FD, Dufrêne YF (2003) Aggregation of yeast cells: direct measurement of discrete lectin-carbohydrate interactions. Microbiology 149:2873–2878

    Article  CAS  Google Scholar 

  • Veelders M, Brückner S, Ott D, Unverzagt C, Mösch HU, Essen LO (2010) Structural basis of flocculin-mediated social behavior in yeast. Proc Natl Acad Sci USA 107:22511–22516

    Article  CAS  Google Scholar 

  • Verstrepen KJ, Klis FM (2006) Flocculation, adhesion and biofilm formation yeasts. Mol Microbiol 60(1):5–15

    Article  CAS  Google Scholar 

  • Verstrepen KJ, Derdelinckx G, Delvaux FR, Winderickx J, Thevelein JM, Bauer FF, Pretorius IS (2001) Late fermentation expression of FLO1 in Saccharomyces cerevisiae. J Am Soc Brew Chem 59:69–76

    CAS  Google Scholar 

  • Watari J, Takata Y, Ogawa M, Sahara H, Koshino S, Onnela M, Airaksinen U, Jaatinen R, Penttilä M, Keränen S (1994) Molecular cloning and analysis of the yeast flocculation gene FlO1. Yeast 10:211–225

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Manuela D. Machado gratefully acknowledges the post-doctoral grant from Fundação para a Ciência e a Tecnologia (FCT) from Portuguese Government (SFRH/BPD/72816/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo V. Soares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Holle, A., Machado, M.D. & Soares, E.V. Flocculation in ale brewing strains of Saccharomyces cerevisiae: re-evaluation of the role of cell surface charge and hydrophobicity. Appl Microbiol Biotechnol 93, 1221–1229 (2012). https://doi.org/10.1007/s00253-011-3502-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3502-1

Keywords

Navigation