Skip to main content
Log in

Expression of CYP107Z13 in Streptomyces lividans TK54 catalyzes the oxidation of avermectin to 4″-oxo-avermectin

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Streptomyces ahygroscopicus ZB01 has strong catalytic activity for the regiospecific oxidation of 4″-OH of avermectin to form 4″-oxo-avermectin. A cytochrome P450 gene from S. ahygroscopicus ZB01, cyp107z13, was cloned into pKC1139 to generate pKCZ1 and was transformed into Streptomyces lividans TK54, which does not have the ability to catalyze the conversion of avermectin. CYP107Z13, under the control of an ermE* promoter, was actively expressed in the TK54 recombinant strain as determined by a reduced CO difference spectrum analysis of the crude protein. Analysis of whole-cell biocatalytic activity by high-performance liquid chromatography revealed the recombinant to be able to oxidize avermectin regiospecifically to 4″-oxo-avermectin and CYP107Z13 to be a regioselective oxidase of avermectin. In addition, the whole-cell reaction conditions of the recombinant were optimized. Growth on medium ISP-2 at pH 6 was more conducive for the expression of CYP107Z13 than on medium PYG1 or at pH 7, and active cells of the recombinant strain had higher biocatalytic activity than resting cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bell SG, Dale A, Rees NH, Wong LL (2010) A cytochrome P450 class I electron transfer system from Novosphingobium aromaticivorans. Appl Microbiol Biotechnol 86:163–175

    Article  CAS  Google Scholar 

  • Bibb MJ, White J, Ward JM, Janssen GR (1994) The mRNA for the 23S rRNA methylase encoded by the ermE gene of Saccharopolyspora erythraea is translated in the absence of a conventional ribosome-binding site. Mol Microbiol 14:533–545

    Article  CAS  Google Scholar 

  • Bierman M, Logan R, O’Brien K, Seno ET, Rao RN, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49

    Article  CAS  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Chun YJ, Shimada T, Sanchez-Ponce R, Martin MV, Lei L, Zhao B, Kelly SL, Waterman MR, Lamb DC, Guengerich FP (2007) Electron transport pathway for a Streptomyces cytochrome P450. J Biol Chem 282:7486–17500

    Google Scholar 

  • Chun YJ, Shimada T, Waterman MR, Guengerich FP (2006) Understanding electron transport systems of Streptomyces cytochrome P450. Biochem Soc Trans 34:1183–1185

    Article  CAS  Google Scholar 

  • Dietrich M, Grundmann L, Kurr K, Valinotto L, Saussele T, Schmid RD, Lange S (2005) Recombinant production of human microsomal cytochrome P450 2D6 in the methylotrophic yeast Pichia pastoris. Chembiochem 6:2014–2022

    Article  CAS  Google Scholar 

  • Ding S, Yao D, Deeni YY, Burchell B, Wolf CR, Friedberg T (2001) Human NADPH-P450 oxidoreductase modulates the level of cytochrome P450 CYP2D6 holoprotein via haem oxygenase-dependent and -independent pathways. Biochem J 356:613–619

    Article  CAS  Google Scholar 

  • Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Shrempf H (1985) Genetic manipulation of Streptomyces. A laboratory manual. The John Innes Foundation, Norwich

    Google Scholar 

  • Hopwood DA, Kieser T, Wright HM, Bibb MJ (1983) Plasmids, recombination and chromosome mapping in Streptomyces lividans 66. J Gen Microbiol 129:2257–2269

    CAS  Google Scholar 

  • Jia YM, Liang XM, Fang XQ, Wu JP, Wang DQ, Rui CH, Fan XL, Zhao HY, Wang YX (2007) Synthesis of 4″-benzyloxyimino-4″-deoxyavermectin Bla derivatives. Chin Chem Lett 18:895–898

    Article  CAS  Google Scholar 

  • Jungmann V, Molnár I, Hammer PE, Hill DS, Zirkle R, Buckel TG, Buckel D, Ligon JM, Pachlatko JP (2005) Biocatalytic conversion of avermectin to 4″-oxo-avermectin: characterization of biocatalytically active bacterial strains and of cytochrome P450 monooxygenase enzymes and their genes. Appl Environ Microbiol 71:6968–6976

    Article  CAS  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich

    Google Scholar 

  • Li M, Chen Z, Lin XP, Zhang X, Song Y, Wen Y, Li JL (2008) Engineering of avermectin biosynthetic genes to improve production of ivermectin in Streptomyces avermitilis. Bioorg Med Chem Lett 18:5359–5363

    Article  CAS  Google Scholar 

  • Liu WD, Jiang XL, Ji Y, Niu J, Li M (2011) Cloning and prokaryotic expression of cyp107z gene from Streptomyces ahygroscopicus ZB01. Acta Microbiol Sin 51:410–416

    CAS  Google Scholar 

  • Molnár I, Jungmann V, Stege J, Trefzer A, Pachlatko JP (2006) Biocatalytic conversion of avermectin to 4″-oxo-avermectin: discovery, characterization, heterologous expression and specificity improvement of the cytochrome P450 enzyme. Biochem Soc Trans 34:1236–1240

    Article  Google Scholar 

  • Molnár I, Hill DS, Zirkle R, Hammer PE, Gross F, Buckel TG, Jungmann V, Pachlatko JP, Ligon JM (2005) Biocatalytic conversion of avermectin to 4″-oxo-avermectin: heterologous expression of the ema1 cytochrome P450 monooxygenase. Appl Environ Microbiol 71:6977–6985

    Article  Google Scholar 

  • Omura T, Sato R (1964) The cabon-monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J Biol Chem 239:2370–2378

    CAS  Google Scholar 

  • Ouarradi AE, Lombard M, Buisson D (2010) Biooxidation of methyl group: part 2. Evidences for the involvement of cytochromes P450 in microbial multistep oxidation of terfenadine. J Mol Catal B: Enzym 67:172–178

    Article  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schallmey A, den Besten G, Teune IG, Kembaren RF, Janssen DB (2011) Characterization of cytochrome P450 monooxygenase CYP154H1 from the thermophilic soil bacterium Thermobifida fusca. Appl Microbiol Biotechnol 89:1475–1485

    Article  CAS  Google Scholar 

  • Shrestha P, Oh TJ, Sohng JK (2008) Designing a whole-cell biotransformation system in Escherichia coli using cytochrome P450 from Streptomyces peucetius. Biotechnol Lett 30:1101–1106

    Article  CAS  Google Scholar 

  • Syed K, Doddapaneni H, Subramanian V, Lam YW, Yadav JS (2010) Genome-to-function characterization of novel fungal P450 monooxygenases oxidizing polycyclic aromatic hydrocarbons (PAHs). Biochem Biophys Res Commun 399:492–497

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful for the financial support from the Open Project of The State Key Laboratory for Biology of Plant Diseases and Insect Pests (grant no. 2006PD5). The authors would also like to express their thanks to Professor Yuan Song from the China Agricultural University for providing the S. lividans TK54 strains and vectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, X., Liu, W., Ji, Y. et al. Expression of CYP107Z13 in Streptomyces lividans TK54 catalyzes the oxidation of avermectin to 4″-oxo-avermectin. Appl Microbiol Biotechnol 93, 1957–1963 (2012). https://doi.org/10.1007/s00253-011-3490-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3490-1

Keywords

Navigation